Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Quantum Molecular Descriptors of 6-Thioguanine Adsorbed PPy-PNVK Conducting Polymer: A DFT Analysis
Corresponding Author(s) : Kirtesh Pratap Khare
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
6-Thioguanine (6-TG) is an important drug to cure cancer with fierce adverse effects on human being, necessitating its frequent monitoring. Present work reports the computational analysis of a copolymer (PPy-PNVK), synthesized using polypyrrole (PPy) and poly(9-vinyl carbazole) (PNVK) host polymers. The sensing ability of these polymers for 6-TG, has been performed through the DFT formulated ab initio approach employing the generalized gradient approximations (GGA), considering the revised-Perdew, Burke and Ernzerh (rPBE) pattern of parameters. The suitability of these polymers for 6-TG sensing application, has been assessed by analyzing the variations in the HOMO-LUMO gaps, density of state (DOS), Mulliken population, molecular energy spectrum (MES), adsorption energy (Eads), bond variation, chemical reactivity of the surface, the recovery time (τ) and the electron density plots. The estimated negative adsorption energy confirms the physisorption and stability of 6-TG on PPy, PNVK and their copolymer counterpart. Considering the recovery time, range of detection, reusability and quantum molecular descriptors as an important sensing parameters, it has been observed that the computationally synthesized copolymer is relatively better in comparison to its host polymers.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.D. Miller, A. Goding Sauer, A.P. Ortiz, S.A. Fedewa, P.S. Pinheiro, G. TortoleroLuna, D. MartinezTyson, A. Jemal and R.L. Siegel, CA Cancer J. Clin., 68, 425 (2018); https://doi.org/10.3322/caac.21494
- F. Biemar and M. Foti, Cancer Biol. Med., 10, 183 (2013).
- S.A. Zaidi, Crit. Rev. Anal. Chem., 49, 324 (2019); https://doi.org/10.1080/10408347.2018.1527207
- T.-P. Huynh, A. Wojnarowicz, M. Sosnowska, S. Srebnik, T. Benincori, F. Sannicolò, F. D’Souza and W. Kutner, Biosens. Bioelectron., 70, 153 (2015); https://doi.org/10.1016/j.bios.2015.03.001
- P.U. Civcir, J. Mol. Struct. THEOCHEM, 536, 161 (2001); https://doi.org/10.1016/S0166-1280(00)00636-9
- F.M. Siouri, S. Boldissar, J.A. Berenbeim and M.S. de Vries, J. Phys. Chem. A, 121, 5257 (2017); https://doi.org/10.1021/acs.jpca.7b03036
- B. Ashwood, M. Pollum and C.E. CrespoHernández, Photochem. Photobiol., 95, 33 (2019); https://doi.org/10.1111/php.12975
- A.K. Fotoohi, S.A. Coulthard and F. Albertioni, Biochem. Pharmacol., 79, 1211 (2010); https://doi.org/10.1016/j.bcp.2010.01.006.
- E. Petit, S. Langouet, H. Akhdar, C. Nicolas-Nicolaz, A. Guillouzo and F. Morel, Toxicol. In Vitro, 22, 632 (2008); https://doi.org/10.1016/j.tiv.2007.12.004
- R. Zakrzewski, J. Sep. Sci., 31, 2199 (2008); https://doi.org/10.1002/jssc.200800056
- M.A. Al-Ghobashy, S.A. Hassan, D.H. Abdelaziz, N.M. Elhosseiny, N.A. Sabry, A.S. Attia and M.H. El-Sayed, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 1038, 88 (2016); https://doi.org/10.1016/j.jchromb.2016.10.035
- H. Karimi-Maleh, A.F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri and R. Moradi, Biosens. Bioelectron., 86, 879 (2016); https://doi.org/10.1016/j.bios.2016.07.086
- L. Changsong, D. Chuan and F. Kecong, Chin. J. Anal. Chem., 20, 9 (1992).
- X.Y. Deng, Y. Tang, L.H. Wu, L.J. Liu, X. Wang, Y.H. Chen, H.Q. Zhang and Y. Tian, Chin. J. Anal. Chem., 37, 79 (2009).
- M. Amjadi and L. Farzampour, Luminescence, 29, 689 (2014): https://doi.org/10.1002/bio.2612
- A.A. Ensafi and H. Karimi-Maleh, J. Electroanal. Chem., 640, 75 (2010); https://doi.org/10.1016/j.jelechem.2010.01.010
- M. Elyasi, M.A. Khalilzadeh and H. Karimi-Maleh, Food Chem., 141, 4311 (2013); https://doi.org/10.1016/j.foodchem.2013.07.020
- M. Amir, M.M. Tunesi, R.A. Soomro, A. Baykal and N.H. Kalwar, J. Electron. Mater., 47, 2198 (2018); https://doi.org/10.1007/s11664-018-6076-1
- F. Charbgoo, M. Ramezani and M. Darroudi, Biosens. Bioelectron., 96, 33 (2017); https://doi.org/10.1016/j.bios.2017.04.037
- Z. Chu, J. Peng and W. Jin, Sens. Actuators B Chem., 243, 919 (2017); https://doi.org/10.1016/j.snb.2016.12.022
- D. Wang, B. Huang, J. Liu, X. Guo, G. Abudukeyoumu, Y. Zhang, B.- C. Ye and Y. Li, Biosens. Bioelectron., 102, 389 (2018); https://doi.org/10.1016/j.bios.2017.11.051
- M.C. Bonetto, F.F. Muñoz, V.E. Diz, N.J. Sacco and E. Cortón, Electrochim. Acta, 283, 338 (2018); https://doi.org/10.1016/j.electacta.2018.06.179
- M. Naseri, L. Fotouhi and A. Ehsani, Chem. Rec., 18, 599 (2018); https://doi.org/10.1002/tcr.201700101
- J.-M. Moon, N. Thapliyal, K.K. Hussain, R.N. Goyal and Y.-B. Shim, Biosens. Bioelectron., 102, 540 (2018); https://doi.org/10.1016/j.bios.2017.11.069
- Y. Wang, A. Liu, Y. Han and T. Li, Polym. Int., 69, 7 (2020); https://doi.org/10.1002/pi.5907
- T.-H. Le, Y. Kim and H. Yoon, Polymers, 9, 150 (2017); https://doi.org/10.3390/polym9040150
- A.G. Mignani and F. Baldini, Phys. Med. Biol., 42, 967 (1997); https://doi.org/10.1088/0031-9155/42/5/015
- S.N. Topkaya, M. Azimzadeh and M. Ozsoz, Electroanalysis, 28, 1402 (2016); https://doi.org/10.1002/elan.201501174
- D. Sharma, M.I. Sabela, S. Kanchi, K. Bisetty, A.A. Skelton and B. Honarparvar, J. Electroanal. Chem., 808, 160 (2018); https://doi.org/10.1016/j.jelechem.2017.11.039
- S. Ponnada, D.B. Gorle and M.S. Kiai, Anal. Methods, 14, 560 (2022); https://doi.org/10.1039/D1AY02150H
- K.K. Naik, A. Gangan, B. Chakraborty, S.K. Nayak and C.S. Rout, ACS Appl. Mater. Interfaces, 9, 23894 (2017); https://doi.org/10.1021/acsami.7b02217
- S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, T. Gunst, J. Schneider, B. Verstichel, D. Stradi, P.A. Khomyakov and U.G. VejHansen, J. Phys. Condens. Matter, 32, 15901 (2020); https://doi.org/10.1088/1361-648X/ab4007
- K. Capelle, Braz. J. Phys., 36(4a), 1318 (2006); https://doi.org/10.1590/S0103-97332006000700035
- B. Hammer, L.B. Hansen and J.K. Nørskov, Phys. Rev. B Condens. Matter, 59, 7413 (1999); https://doi.org/10.1103/PhysRevB.59.7413
- S. Gowtham, R.H. Scheicher, R. Ahuja, R. Pandey and S.P. Karna, Phys. Rev. B Condens. Matter Mater. Phys., 76, 33401 (2007); https://doi.org/10.1103/PhysRevB.76.033401
- S. Agrawal, G. Kaushal and A. Srivastava, Chem. Phys. Lett., 762, 138121 (2021); https://doi.org/10.1016/j.cplett.2020.138121
- K. Gaurav, B. SanthiBhushan, R. Mehla and A. Srivastava, J. Electron. Mater., 50, 1022 (2021); https://doi.org/10.1007/s11664-020-08663-0
- M. Biswas and A. Roy, J. Appl. Polym. Sci., 49, 2189 (1993); https://doi.org/10.1002/app.1993.070491215
- J. Luo, Z.Q. Xue, W.M. Liu, J.L. Wu and Z.Q. Yang, J. Phys. Chem. A, 110, 12005 (2006); https://doi.org/10.1021/jp063669m
- R. Kurtaran, S. Odabasioglu, A. Azizoglu, H. Kara and O. Atakol, Polyhedron, 26, 5069 (2007); https://doi.org/10.1016/j.poly.2007.07.021
- M. Vatanparast and Z. Shariatinia, J. Mol. Graph. Model., 89, 50 (2019); https://doi.org/10.1016/j.jmgm.2019.02.012
References
K.D. Miller, A. Goding Sauer, A.P. Ortiz, S.A. Fedewa, P.S. Pinheiro, G. TortoleroLuna, D. MartinezTyson, A. Jemal and R.L. Siegel, CA Cancer J. Clin., 68, 425 (2018); https://doi.org/10.3322/caac.21494
F. Biemar and M. Foti, Cancer Biol. Med., 10, 183 (2013).
S.A. Zaidi, Crit. Rev. Anal. Chem., 49, 324 (2019); https://doi.org/10.1080/10408347.2018.1527207
T.-P. Huynh, A. Wojnarowicz, M. Sosnowska, S. Srebnik, T. Benincori, F. Sannicolò, F. D’Souza and W. Kutner, Biosens. Bioelectron., 70, 153 (2015); https://doi.org/10.1016/j.bios.2015.03.001
P.U. Civcir, J. Mol. Struct. THEOCHEM, 536, 161 (2001); https://doi.org/10.1016/S0166-1280(00)00636-9
F.M. Siouri, S. Boldissar, J.A. Berenbeim and M.S. de Vries, J. Phys. Chem. A, 121, 5257 (2017); https://doi.org/10.1021/acs.jpca.7b03036
B. Ashwood, M. Pollum and C.E. CrespoHernández, Photochem. Photobiol., 95, 33 (2019); https://doi.org/10.1111/php.12975
A.K. Fotoohi, S.A. Coulthard and F. Albertioni, Biochem. Pharmacol., 79, 1211 (2010); https://doi.org/10.1016/j.bcp.2010.01.006.
E. Petit, S. Langouet, H. Akhdar, C. Nicolas-Nicolaz, A. Guillouzo and F. Morel, Toxicol. In Vitro, 22, 632 (2008); https://doi.org/10.1016/j.tiv.2007.12.004
R. Zakrzewski, J. Sep. Sci., 31, 2199 (2008); https://doi.org/10.1002/jssc.200800056
M.A. Al-Ghobashy, S.A. Hassan, D.H. Abdelaziz, N.M. Elhosseiny, N.A. Sabry, A.S. Attia and M.H. El-Sayed, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 1038, 88 (2016); https://doi.org/10.1016/j.jchromb.2016.10.035
H. Karimi-Maleh, A.F. Shojaei, K. Tabatabaeian, F. Karimi, S. Shakeri and R. Moradi, Biosens. Bioelectron., 86, 879 (2016); https://doi.org/10.1016/j.bios.2016.07.086
L. Changsong, D. Chuan and F. Kecong, Chin. J. Anal. Chem., 20, 9 (1992).
X.Y. Deng, Y. Tang, L.H. Wu, L.J. Liu, X. Wang, Y.H. Chen, H.Q. Zhang and Y. Tian, Chin. J. Anal. Chem., 37, 79 (2009).
M. Amjadi and L. Farzampour, Luminescence, 29, 689 (2014): https://doi.org/10.1002/bio.2612
A.A. Ensafi and H. Karimi-Maleh, J. Electroanal. Chem., 640, 75 (2010); https://doi.org/10.1016/j.jelechem.2010.01.010
M. Elyasi, M.A. Khalilzadeh and H. Karimi-Maleh, Food Chem., 141, 4311 (2013); https://doi.org/10.1016/j.foodchem.2013.07.020
M. Amir, M.M. Tunesi, R.A. Soomro, A. Baykal and N.H. Kalwar, J. Electron. Mater., 47, 2198 (2018); https://doi.org/10.1007/s11664-018-6076-1
F. Charbgoo, M. Ramezani and M. Darroudi, Biosens. Bioelectron., 96, 33 (2017); https://doi.org/10.1016/j.bios.2017.04.037
Z. Chu, J. Peng and W. Jin, Sens. Actuators B Chem., 243, 919 (2017); https://doi.org/10.1016/j.snb.2016.12.022
D. Wang, B. Huang, J. Liu, X. Guo, G. Abudukeyoumu, Y. Zhang, B.- C. Ye and Y. Li, Biosens. Bioelectron., 102, 389 (2018); https://doi.org/10.1016/j.bios.2017.11.051
M.C. Bonetto, F.F. Muñoz, V.E. Diz, N.J. Sacco and E. Cortón, Electrochim. Acta, 283, 338 (2018); https://doi.org/10.1016/j.electacta.2018.06.179
M. Naseri, L. Fotouhi and A. Ehsani, Chem. Rec., 18, 599 (2018); https://doi.org/10.1002/tcr.201700101
J.-M. Moon, N. Thapliyal, K.K. Hussain, R.N. Goyal and Y.-B. Shim, Biosens. Bioelectron., 102, 540 (2018); https://doi.org/10.1016/j.bios.2017.11.069
Y. Wang, A. Liu, Y. Han and T. Li, Polym. Int., 69, 7 (2020); https://doi.org/10.1002/pi.5907
T.-H. Le, Y. Kim and H. Yoon, Polymers, 9, 150 (2017); https://doi.org/10.3390/polym9040150
A.G. Mignani and F. Baldini, Phys. Med. Biol., 42, 967 (1997); https://doi.org/10.1088/0031-9155/42/5/015
S.N. Topkaya, M. Azimzadeh and M. Ozsoz, Electroanalysis, 28, 1402 (2016); https://doi.org/10.1002/elan.201501174
D. Sharma, M.I. Sabela, S. Kanchi, K. Bisetty, A.A. Skelton and B. Honarparvar, J. Electroanal. Chem., 808, 160 (2018); https://doi.org/10.1016/j.jelechem.2017.11.039
S. Ponnada, D.B. Gorle and M.S. Kiai, Anal. Methods, 14, 560 (2022); https://doi.org/10.1039/D1AY02150H
K.K. Naik, A. Gangan, B. Chakraborty, S.K. Nayak and C.S. Rout, ACS Appl. Mater. Interfaces, 9, 23894 (2017); https://doi.org/10.1021/acsami.7b02217
S. Smidstrup, T. Markussen, P. Vancraeyveld, J. Wellendorff, T. Gunst, J. Schneider, B. Verstichel, D. Stradi, P.A. Khomyakov and U.G. VejHansen, J. Phys. Condens. Matter, 32, 15901 (2020); https://doi.org/10.1088/1361-648X/ab4007
K. Capelle, Braz. J. Phys., 36(4a), 1318 (2006); https://doi.org/10.1590/S0103-97332006000700035
B. Hammer, L.B. Hansen and J.K. Nørskov, Phys. Rev. B Condens. Matter, 59, 7413 (1999); https://doi.org/10.1103/PhysRevB.59.7413
S. Gowtham, R.H. Scheicher, R. Ahuja, R. Pandey and S.P. Karna, Phys. Rev. B Condens. Matter Mater. Phys., 76, 33401 (2007); https://doi.org/10.1103/PhysRevB.76.033401
S. Agrawal, G. Kaushal and A. Srivastava, Chem. Phys. Lett., 762, 138121 (2021); https://doi.org/10.1016/j.cplett.2020.138121
K. Gaurav, B. SanthiBhushan, R. Mehla and A. Srivastava, J. Electron. Mater., 50, 1022 (2021); https://doi.org/10.1007/s11664-020-08663-0
M. Biswas and A. Roy, J. Appl. Polym. Sci., 49, 2189 (1993); https://doi.org/10.1002/app.1993.070491215
J. Luo, Z.Q. Xue, W.M. Liu, J.L. Wu and Z.Q. Yang, J. Phys. Chem. A, 110, 12005 (2006); https://doi.org/10.1021/jp063669m
R. Kurtaran, S. Odabasioglu, A. Azizoglu, H. Kara and O. Atakol, Polyhedron, 26, 5069 (2007); https://doi.org/10.1016/j.poly.2007.07.021
M. Vatanparast and Z. Shariatinia, J. Mol. Graph. Model., 89, 50 (2019); https://doi.org/10.1016/j.jmgm.2019.02.012