Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave-Assisted Synthesis of Ceria-Zirconia Nanoparticles: Characterization and their Antimicrobial Studies
Corresponding Author(s) : Thirumoorthi Arunachalam
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
Ceria-zirconia (CZAA) nanoparticles with varied molar ratio of 1:1, 0.8:0.2, 0.6:0.4, 0.4:0.6 and 0.2:0.8 labelled as CZAA-0, CZAA-1, CZAA-2, CZAA-3 and CZAA-4 were prepared using cerium nitrate, zirconium nitrate and ascorbic acid as promoter. The X-ray diffraction, scanning electron microscopy, ultraviolet-visible, Raman and Fourier transform infrared spectra were used to characterize the prepared nanoparticles. The prepared CZAA nanoparticles were tested for antibacterial activity against Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus and Enterococcus faecalis bacterial strains as well as Aspergillus niger, Penicillium and Candida albicans fungal strains using the well diffusion method. They were shown to be highly antimicrobial agents to all pathogenic strains tested.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xia, Y. Xiong, B. Lim and S.E. Skrabalak, Angew. Chem. Int. Ed., 48, 60 (2009); https://doi.org/10.1002/anie.200802248
- K. Esumi, K. Miyamoto and T. Yoshimura, J. Colloid Interface Sci., 254, 402 (2002); https://doi.org/10.1006/jcis.2002.8580
- L. Xia, H. Wang, J. Wang, K. Gong, Y. Jia, H. Zhang and M. Sun, J. Chem. Phys., 129, 134703 (2008); https://doi.org/10.1063/1.2987705
- O.V. Salata, J. Nanobiotechnol., 2, 3 (2004); https://doi.org/10.1186/1477-3155-2-3
- I. Pastoriza-Santos and L.M. Liz-Marz’an, Langmuir, 18, 2888 (2002); https://doi.org/10.1021/la015578g
- C.M. Gonzalez, Y. Liu and J.C. Scaiano, J. Phys. Chem. C, 113, 11861 (2009); https://doi.org/10.1021/jp902061v
- B. Yin, H. Ma, S. Wang and S. Chen, J. Phys. Chem. B, 107, 8898 (2003); https://doi.org/10.1021/jp0349031
- S.S. Shankar, A. Ahmad and M. Sastry, Biotechnol. Prog., 19, 1627 (2003); https://doi.org/10.1021/bp034070w
- D. Adam, Nature, 421, 571 (2003); https://doi.org/10.1038/421571a
- D.M.P. Mingos and D.R. Baghurst, Chem. Soc. Rev., 20, 1 (1991); https://doi.org/10.1039/cs9912000001
- G. Majetich and R. Hicks, J. Microw. Power Electromagn. Energy, 30, 27 (1995); https://doi.org/10.1080/08327823.1995.11688258
- S.A. Galema, Chem. Soc. Rev., 26, 233 (1997); https://doi.org/10.1039/cs9972600233
- A. De la Hoz, A. Diaz-Ortiz and A. Moreno, Chem. Soc. Rev., 34, 164 (2005); https://doi.org/10.1039/B411438H
- S. Dey, S. Sun and N.S. Mehta, Carbon Capture Sci. Technol., 1, 100013 (2021); https://doi.org/10.1016/j.ccst.2021.100013
- S. Biswas, A. Pal and T. Pal, RSC Adv., 10, 35449 (2020); https://doi.org/10.1039/D0RA06168A
- V. Sajith, M. Sandhya and C.B. Sobhan, An Investigation into the Effect of Inclusion of Cerium Oxide Nanoparticles on the Physicochemical Properties of Diesel Oil, In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition (ASME IMECE '06), ASME Materials Division Publication, pp. 1-6 (2006).
- A. Tarancon, G. Dezanneau, J. Arbiol, F. Peiro and J.R. Morante, J. Power Sources, 118, 256 (2003); https://doi.org/10.1016/S0378-7753(03)00091-0
- S.A. Ghom, C. Zamani, S. Nazarpour, T. Andreu and J.R. Morante, Sens. Actuators B Chem., 140, 216 (2009); https://doi.org/10.1016/j.snb.2009.02.078
- A.G. Frangoul, K.B. Sundaram and P.F. Wahid, J. Vac. Sci. Technol. B, 9, 181 (1991); https://doi.org/10.1116/1.585285
- M. Das, S. Patil, N. Bhargava, J.-F. Kang, L.M. Riedel, S. Seal and J.J. Hickman, Biomaterials, 28, 1918 (2007); https://doi.org/10.1016/j.biomaterials.2006.11.036
- A. Cabanas, J.A. Darr, E. Lester and M. Poliakoff, J. Mater. Chem., 11, 561 (2001); https://doi.org/10.1039/B008095K
- J. Liu, Z. Zhao, Y.S. Chen, C.M. Xu, A.J. Duan and G.Y. Jiang, Catal. Today, 175, 117 (2011); https://doi.org/10.1016/j.cattod.2011.05.023
- R. Bakkiyaraj, M. Balakrishnan, G. Bharath and N. Ponpandian, J. Alloys Compd., 724, 555 (2017); https://doi.org/10.1016/j.jallcom.2017.07.049
- G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip and R.P. Allaker, Int. J. Antimicrob. Agents, 33, 587 (2009); https://doi.org/10.1016/j.ijantimicag.2008.12.004
- V. Duraipandiyan and S. Ignacimuthu, Asian Pac. J. Trop. Biomed., 1, S204 (2011); https://doi.org/10.1016/S2221-1691(11)60157-3
- Y. Abou-Jawdah, H. Sobh and A. Salameh, J. Agric. Food Chem., 50, 3208 (2002); https://doi.org/10.1021/jf0115490
- G.R. Rao and H.R. Sahu, Proc. Indian Acad. Sci. Chem. Sci., 113, 651 (2001).
- K.A. Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, G. Muralidharan and T.R. Rajasekaran, J. Mater. Sci. Mater. Electron., 27, 1566 (2016); https://doi.org/10.1007/s10854-016-5214-x
- S Letichevsky, C.A. Tellez, R.R. de Avillez, M.I.P. da Silva, M.A. Fraga and L.G. Appel, Appl. Catal. B, 58, 203 (2005); https://doi.org/10.1016/j.apcatb.2004.10.014
- D.E. Clark, I. Ahmad and R.C. Dalton, Mater. Sci. Eng. A, 144, 91 (1991); https://doi.org/10.1016/0921-5093(91)90213-7
- T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink and A.E. Nel, ACS Nano, 2, 2121 (2008); https://doi.org/10.1021/nn800511k
- S. Gowri, R. Rajiv Gandhi and M. Sundrarajan, Mater. Sci. Technol., 30, 782 (2014); https://doi.org/10.1016/j.jmst.2014.03.002
References
Y. Xia, Y. Xiong, B. Lim and S.E. Skrabalak, Angew. Chem. Int. Ed., 48, 60 (2009); https://doi.org/10.1002/anie.200802248
K. Esumi, K. Miyamoto and T. Yoshimura, J. Colloid Interface Sci., 254, 402 (2002); https://doi.org/10.1006/jcis.2002.8580
L. Xia, H. Wang, J. Wang, K. Gong, Y. Jia, H. Zhang and M. Sun, J. Chem. Phys., 129, 134703 (2008); https://doi.org/10.1063/1.2987705
O.V. Salata, J. Nanobiotechnol., 2, 3 (2004); https://doi.org/10.1186/1477-3155-2-3
I. Pastoriza-Santos and L.M. Liz-Marz’an, Langmuir, 18, 2888 (2002); https://doi.org/10.1021/la015578g
C.M. Gonzalez, Y. Liu and J.C. Scaiano, J. Phys. Chem. C, 113, 11861 (2009); https://doi.org/10.1021/jp902061v
B. Yin, H. Ma, S. Wang and S. Chen, J. Phys. Chem. B, 107, 8898 (2003); https://doi.org/10.1021/jp0349031
S.S. Shankar, A. Ahmad and M. Sastry, Biotechnol. Prog., 19, 1627 (2003); https://doi.org/10.1021/bp034070w
D. Adam, Nature, 421, 571 (2003); https://doi.org/10.1038/421571a
D.M.P. Mingos and D.R. Baghurst, Chem. Soc. Rev., 20, 1 (1991); https://doi.org/10.1039/cs9912000001
G. Majetich and R. Hicks, J. Microw. Power Electromagn. Energy, 30, 27 (1995); https://doi.org/10.1080/08327823.1995.11688258
S.A. Galema, Chem. Soc. Rev., 26, 233 (1997); https://doi.org/10.1039/cs9972600233
A. De la Hoz, A. Diaz-Ortiz and A. Moreno, Chem. Soc. Rev., 34, 164 (2005); https://doi.org/10.1039/B411438H
S. Dey, S. Sun and N.S. Mehta, Carbon Capture Sci. Technol., 1, 100013 (2021); https://doi.org/10.1016/j.ccst.2021.100013
S. Biswas, A. Pal and T. Pal, RSC Adv., 10, 35449 (2020); https://doi.org/10.1039/D0RA06168A
V. Sajith, M. Sandhya and C.B. Sobhan, An Investigation into the Effect of Inclusion of Cerium Oxide Nanoparticles on the Physicochemical Properties of Diesel Oil, In: Proceedings of the ASME International Mechanical Engineering Congress and Exposition (ASME IMECE '06), ASME Materials Division Publication, pp. 1-6 (2006).
A. Tarancon, G. Dezanneau, J. Arbiol, F. Peiro and J.R. Morante, J. Power Sources, 118, 256 (2003); https://doi.org/10.1016/S0378-7753(03)00091-0
S.A. Ghom, C. Zamani, S. Nazarpour, T. Andreu and J.R. Morante, Sens. Actuators B Chem., 140, 216 (2009); https://doi.org/10.1016/j.snb.2009.02.078
A.G. Frangoul, K.B. Sundaram and P.F. Wahid, J. Vac. Sci. Technol. B, 9, 181 (1991); https://doi.org/10.1116/1.585285
M. Das, S. Patil, N. Bhargava, J.-F. Kang, L.M. Riedel, S. Seal and J.J. Hickman, Biomaterials, 28, 1918 (2007); https://doi.org/10.1016/j.biomaterials.2006.11.036
A. Cabanas, J.A. Darr, E. Lester and M. Poliakoff, J. Mater. Chem., 11, 561 (2001); https://doi.org/10.1039/B008095K
J. Liu, Z. Zhao, Y.S. Chen, C.M. Xu, A.J. Duan and G.Y. Jiang, Catal. Today, 175, 117 (2011); https://doi.org/10.1016/j.cattod.2011.05.023
R. Bakkiyaraj, M. Balakrishnan, G. Bharath and N. Ponpandian, J. Alloys Compd., 724, 555 (2017); https://doi.org/10.1016/j.jallcom.2017.07.049
G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip and R.P. Allaker, Int. J. Antimicrob. Agents, 33, 587 (2009); https://doi.org/10.1016/j.ijantimicag.2008.12.004
V. Duraipandiyan and S. Ignacimuthu, Asian Pac. J. Trop. Biomed., 1, S204 (2011); https://doi.org/10.1016/S2221-1691(11)60157-3
Y. Abou-Jawdah, H. Sobh and A. Salameh, J. Agric. Food Chem., 50, 3208 (2002); https://doi.org/10.1021/jf0115490
G.R. Rao and H.R. Sahu, Proc. Indian Acad. Sci. Chem. Sci., 113, 651 (2001).
K.A. Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, G. Muralidharan and T.R. Rajasekaran, J. Mater. Sci. Mater. Electron., 27, 1566 (2016); https://doi.org/10.1007/s10854-016-5214-x
S Letichevsky, C.A. Tellez, R.R. de Avillez, M.I.P. da Silva, M.A. Fraga and L.G. Appel, Appl. Catal. B, 58, 203 (2005); https://doi.org/10.1016/j.apcatb.2004.10.014
D.E. Clark, I. Ahmad and R.C. Dalton, Mater. Sci. Eng. A, 144, 91 (1991); https://doi.org/10.1016/0921-5093(91)90213-7
T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink and A.E. Nel, ACS Nano, 2, 2121 (2008); https://doi.org/10.1021/nn800511k
S. Gowri, R. Rajiv Gandhi and M. Sundrarajan, Mater. Sci. Technol., 30, 782 (2014); https://doi.org/10.1016/j.jmst.2014.03.002