Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Fabrication of Eco-friendly UV-visible Driven Ni:CaCO3 Photocatalyst for Sustainable Environmental Remediation
Corresponding Author(s) : V. Ramasamy
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
Nano CaCO3, polymethyl methacrylate (PMMA) decorated Ni-doped CaCO3 nanoparticles (CPN) were synthesized from natural calcium magnesium carbonate (CaMg(CO3)2) via biomimetic synthetic route. The obtained products were thoroughly characterized through various physico-chemical techniques such as UV-DRS, PL, FTIR, XRD, TG-DTA, FE-SEM with EDX mapping, HR-TEM and SAED patterns. The XRD results revealed that the prepared products were in pure rhombohedral structure with the size range of 20-50 nm, respectively. Compared to other synthesized products, the sample CPN6 exhibited a blue-shifted band gap (2.7 eV) and red-shifted absorption and emission values. The morphological analysis of the samples shows the aggregated and rhombohedral with high porous like structure. The TG-DTA analysis shows the good thermal stability (up to 830 ºC). The photocatalytic activity exhibits a higher degradation efficiency 87% and 97% against methylene blue and rhodamine B dyes, respectively. The effect of different scavenger agents (ascorbic acid, AgNO3, EDTA2NA and isopropanol acid) was used to examine the efficiency of the photocatalytic activity. Based on the results, the prepared CPN6 nanoparticles show a great potential candidate for removal of organic dyes in the aqueous medium.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. He, Z. Liu, J. Wu, X. Pan, Z. Fang, J. Li and B.A. Bryan, Nat. Commun., 12, 4667 (2021); https://doi.org/10.1038/s41467-021-25026-3
- P.H. Gleick, Water Int., 25, 127 (2000); https://doi.org/10.1080/02508060008686804
- S.B. Moore and L.W. Ausley, J. Clean. Prod., 12, 585 (2004); https://doi.org/10.1016/S0959-6526(03)00058-1
- X. Zhang, Y. Pan, J. Zhao, X. Hao, Y. Wang, D.W. Schubert, C. Liu, C. Shen, X. Liu, Eng. Sci., 7, 65 (2019); https://doi.org/10.30919/es8d505
- K. Rani, J. Singh, A. Jangra, P. Kumar, S. Kumar and R. Kumar, Asian J. Chem., 34, 619 (2022); https://doi.org/10.14233/ajchem.2022.23532
- A.R. Khataee and M.B. Kasiri, J. Mol. Catal. Chem., 328, 8 (2010); https://doi.org/10.1016/j.molcata.2010.05.023
- T.C. dos Santos, G.J. Zocolo, D.A. Morales, G.A. Umbuzeiro and M.V.B. Zanoni, Food Chem. Toxicol., 68, 307 (2014); https://doi.org/10.1016/j.fct.2014.03.025
- P. Nigam, G. Armour, I.M. Banat, D. Singh and R. Marchant, Bioresour. Technol., 72, 219 (2000); https://doi.org/10.1016/S0960-8524(99)00123-6
- E.J. Weber and R.L. Adams, Environ. Sci. Technol., 29, 1163 (1995); https://doi.org/10.1021/es00005a005
- J.L. Adrio and A.L. Demain, Biomolecules, 4, 117 (2014); https://doi.org/10.3390/biom4010117
- M.S. Lucas, A.A. Dias, A. Sampaio, C. Amaral and J.A. Peres, Water Res., 41, 1103 (2007); https://doi.org/10.1016/j.watres.2006.12.013
- S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun and J. Sun, RSC Adv., 5, 14610 (2015); https://doi.org/10.1039/C4RA13734E
- S. Zhu and D. Wang, Adv. Energy Mater., 7, 1700841 (2017); https://doi.org/10.1002/aenm.201700841
- W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang and L.C. Sim, Environ. Sci. Pollut. Res. Int., 27, 2522 (2020); https://doi.org/10.1007/s11356-019-07193-5
- S. Rong, X. Tang, H. Liu, J. Xu, Z. Yuan, X. Peng, J. Niu, Y. Wu, L. He and K. Qian, NanoImpact, 22, 100304 (2021); https://doi.org/10.1016/j.impact.2021.100304
- S.K. Loeb, P.J.J. Alvarez, J.A. Brame, E.L. Cates, W. Choi, J. Crittenden, D.D. Dionysiou, Q. Li, G. Li-Puma, X. Quan, D.L. Sedlak, T.D. Waite, P. Westerhoff and J.-H. Kim, Environ. Sci. Technol., 53, 2937 (2019); https://doi.org/10.1021/acs.est.8b05041
- S. Sharma and A. Bhattacharya, Appl. Water Sci., 7, 1043 (2017); https://doi.org/10.1007/s13201-016-0455-7
- S. Peiris, J. McMurtrie and H.Y. Zhu, Catal. Sci. Technol., 6, 320 (2016); https://doi.org/10.1039/C5CY02048D
- K.K. Jaiswal, S. Dutta, C.B. Pohrmen, R. Verma, A. Kumar and A.P. Ramaswamy, Inorg. Nan-Met. Chem., 51, 995 (2021); https://doi.org/10.1080/24701556.2020.1813769
- Z.S. Zhu, X.J. Yu, J. Qu, Y.Q. Jing, Y. Abdelkrim and Z.Z. Yu, Appl. Catal. B, 261, 118238 (2020); https://doi.org/10.1016/j.apcatb.2019.118238
- Y. Liu, X. He, X. Duan, Y. Fu, D. Fatta-Kassinos and D.D. Dionysiou, Water Res., 95, 195 (2016); https://doi.org/10.1016/j.watres.2016.03.011
- J.A. McKenzie and C. Vasconcelos, Sedimentology, 56, 205 (2009); https://doi.org/10.1111/j.1365-3091.2008.01027.x
- X. Zhang, M. Liu, Z. Kang, B. Wang, B. Wang, F. Jiang, X. Wang, D.- P. Yang and R. Luque, Chem. Eng. J., 388, 124304 (2020); https://doi.org/10.1016/j.cej.2020.124304
- Vol. 35, No. 3 (2023) Fabrication of Eco-friendly UV-visible Driven Ni:CaCO3 Photocatalyst 703
- T.B.N.S. Madugalla, H.M.T.G.A. Pitawala and D.G.G.P. Karunaratne, Nat. Resour. Res., 23, 217 (2014); https://doi.org/10.1007/s11053-013-9222-8
- S. Singh, H. Mahalingam and P.K. Singh, Appl. Catal. A Gen., 462- 463, 178 (2013); https://doi.org/10.1016/j.apcata.2013.04.039
- J. Lv, L. Qiu and B. Qu, J. Cryst. Growth, 267, 676 (2004); https://doi.org/10.1016/j.jcrysgro.2004.04.034
- V. Melinte, L. Stroea and A.L. Chibac-Scutaru, Catalysts, 9, 986 (2019); https://doi.org/10.3390/catal9120986
- C. Yang, X. Wang, Y. Ji, T. Ma, F. Zhang, Y. Wang, M. Ci, D. Chen, A. Jiang and W. Wang, NanoImpact, 15, 100174 (2019); https://doi.org/10.1016/j.impact.2019.100174
- R. Gusain, K. Gupta, P. Joshi and O.P. Khatri, Adv. Colloid Interface Sci., 272, 102009 (2019); https://doi.org/10.1016/j.cis.2019.102009
- C. Karthikeyan, P. Arunachalam, K. Ramachandran, A.M. Al-Mayouf and S. Karuppuchamy, J. Alloys Compd., 828, 154281 (2020); https://doi.org/10.1016/j.jallcom.2020.154281
- M.M. Nassar, T.E. Farrag, M.S. Mahmoud, S. Abdelmonem, K.A. Khalil and N.A.M. Barakat, Adv. Powder Technol., 26, 914 (2015); https://doi.org/10.1016/j.apt.2015.03.006
- M.A. Karimi and M. Ranjbar, Synth. React. Inorg. Met.-Org. NanoMet. Chem., 46, 635 (2016); https://doi.org/10.1080/15533174.2014.988817
- Q. Cheng, M. Kang, J. Wang, P. Zhang, R. Sun and L. Song, Adv. Powder Technol., 26, 848 (2015); https://doi.org/10.1016/j.apt.2015.02.010
- A.K. Sugih, D. Shukla, H.J. Heeres and A. Mehra, Nanotechnology, 18, 035607 (2007); https://doi.org/10.1088/0957-4484/18/3/035607
- T. Tsuzuki, K. Pethick and P.G. McCormick, J. Nanopart. Res., 2, 375 (2000); https://doi.org/10.1023/A:1010051506232
- M. Gaft, L. Nagli, G. Panczer, G. Waychunas and N. Porat, Am. Mineral., 93, 158 (2008); https://doi.org/10.2138/am.2008.2576
- V. Ramasamy, P. Anand and G. Suresh, Adv. Powder Technol., 29, 818 (2018); https://doi.org/10.1016/j.apt.2017.12.023
- D. Zhang, Russ. J. Phys. Chem. A. Focus Chem., 86, 93 (2012); https://doi.org/10.1134/S0036024412010086
- V. Ramaswamy, V. Ponnusamy and J. Hemalatha, Indian J. Phys., 79, 847 (2005).
- H.M. Zidan and M. Abu-Elnader, Physica B, 355, 308 (2005); https://doi.org/10.1016/j.physb.2004.11.023
- A. Shafiu Kamba, M. Ismail, T.A. Tengku Ibrahim and Z.A.B. Zakaria, J. Nanomater., 2013, 398357 (2013); https://doi.org/10.1155/2013/398357
- L. Vaculikova and E. Plevova, Acta Geodyn. Geomater., 2, 163 (2005).
- M.K. Pal, B. Singh and J. Gautam, J. Therm. Anal. Calorim., 107, 85 (2012); https://doi.org/10.1007/s10973-011-1686-3
- X. Ma, B. Zhou, Y. Deng, Y. Sheng, C. Wang, Y. Pan and Z. Wang, Colloids Surf. A Physicochem. Eng. Asp., 312, 190 (2008); https://doi.org/10.1016/j.colsurfa.2007.06.058
- S. Sivakumar, N.A. Mala, K.M. Batoo and E.H. Raslan, Mater. Technol., 37, 1375 (2022); https://doi.org/10.1080/10667857.2021.1949527
- M.M.M.G.P.G. Mantilaka, D.G.G.P. Karunaratne, R.M.G. Rajapakse and H.M.T.G.A. Pitawala, Powder Technol., 235, 628 (2013); https://doi.org/10.1016/j.powtec.2012.10.048
- M. Ahamed, M.A. Khan, M.J. Akhtar, H.A. Alhadlaq and A. Alshamsan, Sci. Rep., 6, 30196 (2016); https://doi.org/10.1038/srep30196
- L. Wu, J.A. Aguiar, P.P. Dholabhai, T. Holesinger, B.P. Uberuaga, T. Aoki and R.H. Castro, J. Phys. Chem. C, 119, 27855 (2015); https://doi.org/10.1021/acs.jpcc.5b09255
- S. Dutta, S. Som and S.K. Sharma, Dalton Trans., 42, 9654 (2013); https://doi.org/10.1039/c3dt50780g
- V. Ramasamy and G. Vijayalakshmi, J. Mater. Sci. Mater. Electron., 27, 4723 (2016); https://doi.org/10.1007/s10854-016-4352-5
- J.R. Weertman, Mater. Sci. Eng. A, 166, 161 (1993); https://doi.org/10.1016/0921-5093(93)90319-A
- H. Van Swygenhoven, Science, 296, 66 (2002); https://doi.org/10.1126/science.1071040
- M. Samtani, D. Dollimore, F.W. Wilburn and K. Alexander, Thermochim. Acta, 367-368, 285 (2001); https://doi.org/10.1016/S0040-6031(00)00662-6
- A.S. Kamba, M. Ismail, T.A.T. Ibrahim and Z.A.B. Zakaria, J. Nanomater., 2017, 398357 (2017); https://doi.org/10.1155/2013/398357
- M.R. Abeywardena, R.K.W.H.M.K. Elkaduwe, D.G.G.P. Karunarathne, H.M.T.G.A. Pitawala, R.M.G. Rajapakse, A. Manipura and M.M.M.G.P.G. Mantilaka, Adv. Powder Technol., 31, 269 (2020); https://doi.org/10.1016/j.apt.2019.10.018
- A. Chatterjee and S. Mishra, Particuology, 11, 760 (2013); https://doi.org/10.1016/j.partic.2012.11.005
- M. Nakayama, S. Kajiyama, T. Nishimura and T. Kato, Chem. Sci., 6, 6230 (2015); https://doi.org/10.1039/C5SC01820J
- Y. Liu, Y. Jiang, M. Hu, S. Li and Q. Zhai, Chem. Eng. J., 273, 371 (2015); https://doi.org/10.1016/j.cej.2015.03.109
- E.M.S. Azzam, N.A. Fathy, S.M. El-Khouly and R.M. Sami, J. Water Process Eng., 28, 311 (2019); https://doi.org/10.1016/j.jwpe.2019.02.016
- W. Lin, B. Xu and L. Liu, New J. Chem., 38, 5509 (2014); https://doi.org/10.1039/C4NJ01251H
- A.E. Wagner, P. Huebbe, T. Konishi, M.M. Rahman, M. Nakahara, S. Matsugo and G. Rimbach, J. Agric. Food Chem., 56, 11694 (2008); https://doi.org/10.1021/jf802403d
- M.J. Enayat, J. Mater. Sci. Mater. Electron., 29, 19435 (2018); https://doi.org/10.1007/s10854-018-0072-3
- K. Villa, S. Murcia-López, T. Andreu and J.R. Morante, Appl. Catal. B, 163, 150 (2015); https://doi.org/10.1016/j.apcatb.2014.07.055
- T. Tan, D. Beydoun and R. Amal, J. Photochem. Photobiol. Chem., 159, 273 (2003); https://doi.org/10.1016/S1010-6030(03)00171-0
- J.C. Sin, S.M. Lam, K.T. Lee and A.R. Mohamed, Ceram. Int., 40, 5431 (2014); https://doi.org/10.1016/j.ceramint.2013.10.128
References
C. He, Z. Liu, J. Wu, X. Pan, Z. Fang, J. Li and B.A. Bryan, Nat. Commun., 12, 4667 (2021); https://doi.org/10.1038/s41467-021-25026-3
P.H. Gleick, Water Int., 25, 127 (2000); https://doi.org/10.1080/02508060008686804
S.B. Moore and L.W. Ausley, J. Clean. Prod., 12, 585 (2004); https://doi.org/10.1016/S0959-6526(03)00058-1
X. Zhang, Y. Pan, J. Zhao, X. Hao, Y. Wang, D.W. Schubert, C. Liu, C. Shen, X. Liu, Eng. Sci., 7, 65 (2019); https://doi.org/10.30919/es8d505
K. Rani, J. Singh, A. Jangra, P. Kumar, S. Kumar and R. Kumar, Asian J. Chem., 34, 619 (2022); https://doi.org/10.14233/ajchem.2022.23532
A.R. Khataee and M.B. Kasiri, J. Mol. Catal. Chem., 328, 8 (2010); https://doi.org/10.1016/j.molcata.2010.05.023
T.C. dos Santos, G.J. Zocolo, D.A. Morales, G.A. Umbuzeiro and M.V.B. Zanoni, Food Chem. Toxicol., 68, 307 (2014); https://doi.org/10.1016/j.fct.2014.03.025
P. Nigam, G. Armour, I.M. Banat, D. Singh and R. Marchant, Bioresour. Technol., 72, 219 (2000); https://doi.org/10.1016/S0960-8524(99)00123-6
E.J. Weber and R.L. Adams, Environ. Sci. Technol., 29, 1163 (1995); https://doi.org/10.1021/es00005a005
J.L. Adrio and A.L. Demain, Biomolecules, 4, 117 (2014); https://doi.org/10.3390/biom4010117
M.S. Lucas, A.A. Dias, A. Sampaio, C. Amaral and J.A. Peres, Water Res., 41, 1103 (2007); https://doi.org/10.1016/j.watres.2006.12.013
S. Dong, J. Feng, M. Fan, Y. Pi, L. Hu, X. Han, M. Liu, J. Sun and J. Sun, RSC Adv., 5, 14610 (2015); https://doi.org/10.1039/C4RA13734E
S. Zhu and D. Wang, Adv. Energy Mater., 7, 1700841 (2017); https://doi.org/10.1002/aenm.201700841
W.S. Koe, J.W. Lee, W.C. Chong, Y.L. Pang and L.C. Sim, Environ. Sci. Pollut. Res. Int., 27, 2522 (2020); https://doi.org/10.1007/s11356-019-07193-5
S. Rong, X. Tang, H. Liu, J. Xu, Z. Yuan, X. Peng, J. Niu, Y. Wu, L. He and K. Qian, NanoImpact, 22, 100304 (2021); https://doi.org/10.1016/j.impact.2021.100304
S.K. Loeb, P.J.J. Alvarez, J.A. Brame, E.L. Cates, W. Choi, J. Crittenden, D.D. Dionysiou, Q. Li, G. Li-Puma, X. Quan, D.L. Sedlak, T.D. Waite, P. Westerhoff and J.-H. Kim, Environ. Sci. Technol., 53, 2937 (2019); https://doi.org/10.1021/acs.est.8b05041
S. Sharma and A. Bhattacharya, Appl. Water Sci., 7, 1043 (2017); https://doi.org/10.1007/s13201-016-0455-7
S. Peiris, J. McMurtrie and H.Y. Zhu, Catal. Sci. Technol., 6, 320 (2016); https://doi.org/10.1039/C5CY02048D
K.K. Jaiswal, S. Dutta, C.B. Pohrmen, R. Verma, A. Kumar and A.P. Ramaswamy, Inorg. Nan-Met. Chem., 51, 995 (2021); https://doi.org/10.1080/24701556.2020.1813769
Z.S. Zhu, X.J. Yu, J. Qu, Y.Q. Jing, Y. Abdelkrim and Z.Z. Yu, Appl. Catal. B, 261, 118238 (2020); https://doi.org/10.1016/j.apcatb.2019.118238
Y. Liu, X. He, X. Duan, Y. Fu, D. Fatta-Kassinos and D.D. Dionysiou, Water Res., 95, 195 (2016); https://doi.org/10.1016/j.watres.2016.03.011
J.A. McKenzie and C. Vasconcelos, Sedimentology, 56, 205 (2009); https://doi.org/10.1111/j.1365-3091.2008.01027.x
X. Zhang, M. Liu, Z. Kang, B. Wang, B. Wang, F. Jiang, X. Wang, D.- P. Yang and R. Luque, Chem. Eng. J., 388, 124304 (2020); https://doi.org/10.1016/j.cej.2020.124304
Vol. 35, No. 3 (2023) Fabrication of Eco-friendly UV-visible Driven Ni:CaCO3 Photocatalyst 703
T.B.N.S. Madugalla, H.M.T.G.A. Pitawala and D.G.G.P. Karunaratne, Nat. Resour. Res., 23, 217 (2014); https://doi.org/10.1007/s11053-013-9222-8
S. Singh, H. Mahalingam and P.K. Singh, Appl. Catal. A Gen., 462- 463, 178 (2013); https://doi.org/10.1016/j.apcata.2013.04.039
J. Lv, L. Qiu and B. Qu, J. Cryst. Growth, 267, 676 (2004); https://doi.org/10.1016/j.jcrysgro.2004.04.034
V. Melinte, L. Stroea and A.L. Chibac-Scutaru, Catalysts, 9, 986 (2019); https://doi.org/10.3390/catal9120986
C. Yang, X. Wang, Y. Ji, T. Ma, F. Zhang, Y. Wang, M. Ci, D. Chen, A. Jiang and W. Wang, NanoImpact, 15, 100174 (2019); https://doi.org/10.1016/j.impact.2019.100174
R. Gusain, K. Gupta, P. Joshi and O.P. Khatri, Adv. Colloid Interface Sci., 272, 102009 (2019); https://doi.org/10.1016/j.cis.2019.102009
C. Karthikeyan, P. Arunachalam, K. Ramachandran, A.M. Al-Mayouf and S. Karuppuchamy, J. Alloys Compd., 828, 154281 (2020); https://doi.org/10.1016/j.jallcom.2020.154281
M.M. Nassar, T.E. Farrag, M.S. Mahmoud, S. Abdelmonem, K.A. Khalil and N.A.M. Barakat, Adv. Powder Technol., 26, 914 (2015); https://doi.org/10.1016/j.apt.2015.03.006
M.A. Karimi and M. Ranjbar, Synth. React. Inorg. Met.-Org. NanoMet. Chem., 46, 635 (2016); https://doi.org/10.1080/15533174.2014.988817
Q. Cheng, M. Kang, J. Wang, P. Zhang, R. Sun and L. Song, Adv. Powder Technol., 26, 848 (2015); https://doi.org/10.1016/j.apt.2015.02.010
A.K. Sugih, D. Shukla, H.J. Heeres and A. Mehra, Nanotechnology, 18, 035607 (2007); https://doi.org/10.1088/0957-4484/18/3/035607
T. Tsuzuki, K. Pethick and P.G. McCormick, J. Nanopart. Res., 2, 375 (2000); https://doi.org/10.1023/A:1010051506232
M. Gaft, L. Nagli, G. Panczer, G. Waychunas and N. Porat, Am. Mineral., 93, 158 (2008); https://doi.org/10.2138/am.2008.2576
V. Ramasamy, P. Anand and G. Suresh, Adv. Powder Technol., 29, 818 (2018); https://doi.org/10.1016/j.apt.2017.12.023
D. Zhang, Russ. J. Phys. Chem. A. Focus Chem., 86, 93 (2012); https://doi.org/10.1134/S0036024412010086
V. Ramaswamy, V. Ponnusamy and J. Hemalatha, Indian J. Phys., 79, 847 (2005).
H.M. Zidan and M. Abu-Elnader, Physica B, 355, 308 (2005); https://doi.org/10.1016/j.physb.2004.11.023
A. Shafiu Kamba, M. Ismail, T.A. Tengku Ibrahim and Z.A.B. Zakaria, J. Nanomater., 2013, 398357 (2013); https://doi.org/10.1155/2013/398357
L. Vaculikova and E. Plevova, Acta Geodyn. Geomater., 2, 163 (2005).
M.K. Pal, B. Singh and J. Gautam, J. Therm. Anal. Calorim., 107, 85 (2012); https://doi.org/10.1007/s10973-011-1686-3
X. Ma, B. Zhou, Y. Deng, Y. Sheng, C. Wang, Y. Pan and Z. Wang, Colloids Surf. A Physicochem. Eng. Asp., 312, 190 (2008); https://doi.org/10.1016/j.colsurfa.2007.06.058
S. Sivakumar, N.A. Mala, K.M. Batoo and E.H. Raslan, Mater. Technol., 37, 1375 (2022); https://doi.org/10.1080/10667857.2021.1949527
M.M.M.G.P.G. Mantilaka, D.G.G.P. Karunaratne, R.M.G. Rajapakse and H.M.T.G.A. Pitawala, Powder Technol., 235, 628 (2013); https://doi.org/10.1016/j.powtec.2012.10.048
M. Ahamed, M.A. Khan, M.J. Akhtar, H.A. Alhadlaq and A. Alshamsan, Sci. Rep., 6, 30196 (2016); https://doi.org/10.1038/srep30196
L. Wu, J.A. Aguiar, P.P. Dholabhai, T. Holesinger, B.P. Uberuaga, T. Aoki and R.H. Castro, J. Phys. Chem. C, 119, 27855 (2015); https://doi.org/10.1021/acs.jpcc.5b09255
S. Dutta, S. Som and S.K. Sharma, Dalton Trans., 42, 9654 (2013); https://doi.org/10.1039/c3dt50780g
V. Ramasamy and G. Vijayalakshmi, J. Mater. Sci. Mater. Electron., 27, 4723 (2016); https://doi.org/10.1007/s10854-016-4352-5
J.R. Weertman, Mater. Sci. Eng. A, 166, 161 (1993); https://doi.org/10.1016/0921-5093(93)90319-A
H. Van Swygenhoven, Science, 296, 66 (2002); https://doi.org/10.1126/science.1071040
M. Samtani, D. Dollimore, F.W. Wilburn and K. Alexander, Thermochim. Acta, 367-368, 285 (2001); https://doi.org/10.1016/S0040-6031(00)00662-6
A.S. Kamba, M. Ismail, T.A.T. Ibrahim and Z.A.B. Zakaria, J. Nanomater., 2017, 398357 (2017); https://doi.org/10.1155/2013/398357
M.R. Abeywardena, R.K.W.H.M.K. Elkaduwe, D.G.G.P. Karunarathne, H.M.T.G.A. Pitawala, R.M.G. Rajapakse, A. Manipura and M.M.M.G.P.G. Mantilaka, Adv. Powder Technol., 31, 269 (2020); https://doi.org/10.1016/j.apt.2019.10.018
A. Chatterjee and S. Mishra, Particuology, 11, 760 (2013); https://doi.org/10.1016/j.partic.2012.11.005
M. Nakayama, S. Kajiyama, T. Nishimura and T. Kato, Chem. Sci., 6, 6230 (2015); https://doi.org/10.1039/C5SC01820J
Y. Liu, Y. Jiang, M. Hu, S. Li and Q. Zhai, Chem. Eng. J., 273, 371 (2015); https://doi.org/10.1016/j.cej.2015.03.109
E.M.S. Azzam, N.A. Fathy, S.M. El-Khouly and R.M. Sami, J. Water Process Eng., 28, 311 (2019); https://doi.org/10.1016/j.jwpe.2019.02.016
W. Lin, B. Xu and L. Liu, New J. Chem., 38, 5509 (2014); https://doi.org/10.1039/C4NJ01251H
A.E. Wagner, P. Huebbe, T. Konishi, M.M. Rahman, M. Nakahara, S. Matsugo and G. Rimbach, J. Agric. Food Chem., 56, 11694 (2008); https://doi.org/10.1021/jf802403d
M.J. Enayat, J. Mater. Sci. Mater. Electron., 29, 19435 (2018); https://doi.org/10.1007/s10854-018-0072-3
K. Villa, S. Murcia-López, T. Andreu and J.R. Morante, Appl. Catal. B, 163, 150 (2015); https://doi.org/10.1016/j.apcatb.2014.07.055
T. Tan, D. Beydoun and R. Amal, J. Photochem. Photobiol. Chem., 159, 273 (2003); https://doi.org/10.1016/S1010-6030(03)00171-0
J.C. Sin, S.M. Lam, K.T. Lee and A.R. Mohamed, Ceram. Int., 40, 5431 (2014); https://doi.org/10.1016/j.ceramint.2013.10.128