Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Design, Synthesis, Anti-tubercular and Docking Studies of Novel 2-Furanyl-3-substituted Quinazolin-4-one Derivatives
Corresponding Author(s) : Rajasekhar Komarla Kumarachari
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
In this work, the synthesis, characterization and the anti-tubercular activity of novel 2-furanyl-3-substituted quinazolin-4-one derivatives and also predicted their affinity against Mycobacterium tuberculosis enoyl acyl carrier protein reductase were carried out. The targeted compounds were synthesized by the condensation of 2-(furan-2-yl)-4(3H)-1-benzoxazine-4-one with different primary amines. After structural elucidation using spectral data, the compounds were screened for anti-tubercular activity against Mycobacterium tuberculosis H37RV strain. The binding affinity against enoyl acyl carrier protein reductase was predicted using MOE and FITTED docking tools. The synthesized compounds showed a promising anti-tubercular activity in the range from 12.5 to 100 μg/mL. According to MOE docking, the common amino acids in the active site of InhA were found to form hydrogen bonding and hydrophobic interactions with the synthesized quinazolinones. Docking simulations also showed that an aromatic side chain capable of forming hydrogen bond interactions can increase affinity of 2-furanyl quinazolinones to enoyl acyl carrier protein reductase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- WHO, Global Tuberculosis Report 2021, World Health Organization, Edn. 26 (2021).
- A.A. Velayati, M.R. Masjedi, P. Farnia, P. Tabarsi, J. Ghanavi, A.H. ZiaZarifi and S.E. Hoffner, Chest, 136, 420 (2009); https://doi.org/10.1378/chest.08-2427
- Y. Xi, W. Zhang, R.-J. Qiao and J. Tang, PLoS ONE, 17, e0270003 (2022); https://doi.org/10.1371/journal.pone.0270003
- Z.F. Udwadia, R.A. Amale, K.K. Ajbani and C. Rodrigues, Clin. Infect. Dis., 54, 579 (2012); https://doi.org/10.1093/cid/cir889
- Z.F. Udwadia, J. Assoc. Chest Physicians, 4, 41 (2016); https://doi.org/10.4103/2320-8775.183836
- A. Allué-Guardia, J.I. García and J.B. Torrelles, Front. Microbiol., 12, 612675 (2021); https://doi.org/10.3389/fmicb.2021.612675
- K.J. Seung, S. Keshavjee and M.L. Rich, Cold Spring Harb. Perspect. Med., 27, a017863 (2015); https://doi.org/10.1101/cshperspect.a017863
- A. Zumla, P. Nahid and S.T. Cole, Nat. Rev. Drug Discov., 12, 388 (2013); https://doi.org/10.1038/nrd4001
- R. Karan, P. Agarwal, M. Sinha and N. Mahato, ChemEngineering, 5, 73 (2021); https://doi.org/10.3390/chemengineering5040073
- J.N. Akester, P. Njaria, A. Nchinda, C.L. Manach, A. Myrick, V. Singh, N. Lawrence, M. Njoroge, D. Taylor, A. Moosa, A.J. Smith, E.J. Brooks, A.J. Lenaerts, G.T. Robertson, T.R. Ioerger, R. Mueller and K. Chibale, ACS Infect. Dis., 6, 1951 (2017); https://doi.org/10.1021/acsinfecdis.0c00252
- A.K. Khan, Al-Mustansiriyah J. Sci., 28, 122 (2018); https://doi.org/10.23851/mjs.v28i3.180
- E. Jafari, M.R. Khajouei, F. Hassanzadeh, G.H. Hakimelahi and G.A. Khodarahmi, Res. Pharm. Sci., 11, 1 (2016).
- K.K. Rajasekhar, N.D. Nizamuddin, A.S. Surur and Y.T. Mekonnen, Res. Rep. Med. Chem., 6, 15 (2016); https://doi.org/10.2147/RRMC.S91474
- D. Rozwarski, C. Vilcheze, M. Sugantino, R. Bittman and J. Sacchettini, J. Biol. Chem., 22, 1582 (1999).
- C. Vilchèze and W.R. Jacobs Jr., Annu. Rev. Microbiol., 61, 35 (2007); https://doi.org/10.1146/annurev.micro.61.111606.122346
- R.P. Massengo-tiasse and J.E. Cronan, Cell. Mol. Life Sci., 66, 1507 (2009); https://doi.org/10.1007/s00018-009-8704-7
- S.G. Franzblau, R.S. Witzig, J.C. McLaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and R.H. Gilman, J. Clin. Microb., 36, 362 (1998); https://doi.org/10.1128/JCM.36.2.362-366.1998
- S.G. Franzblau, R.S. Witzig, J.C. McLaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and R.H. Gilman, J. Clin. Microbiol., 36, 362 (1998); https://doi.org/10.1128/JCM.36.2.362-366.1998
- X. He, A. Alian, R. Stroud and P.R. Ortiz de Montellano, J. Med. Chem., 49, 6308 (2006); https://doi.org/10.1021/jm060715y
- http://www.chemspider.com/Chemical-Structure.1906.html. Version 2022.0.55.0, Royal Society of Chemistry 2022, 207890.
- E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng and T. Ferrin, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
- The PyMOL Molecular Graphics System, version 1.7.4 Schrödinger, LLC.
- D. Xu and Y. Zhang, J. Biophys., 101, 2525 (2011); https://doi.org/10.1016/j.bpj.2011.10.024
- S.C. Lovell, I.W. Davis, W.B. Arendall III, P.I.W. de Bakker, J.M. Word, M.G. Prisant, J.S. Richardson and D.C. Richardson, Proteins, 50, 437 (2003); https://doi.org/10.1002/prot.10286
- http://nihserver.mbi.ucla.edu/SAVES/ (2011).
- Molecular operating environment (MOE), 2013.08, Chemical Computing Group Inc., Montreal, QC, Canada, H3A 2R7(2015).
References
WHO, Global Tuberculosis Report 2021, World Health Organization, Edn. 26 (2021).
A.A. Velayati, M.R. Masjedi, P. Farnia, P. Tabarsi, J. Ghanavi, A.H. ZiaZarifi and S.E. Hoffner, Chest, 136, 420 (2009); https://doi.org/10.1378/chest.08-2427
Y. Xi, W. Zhang, R.-J. Qiao and J. Tang, PLoS ONE, 17, e0270003 (2022); https://doi.org/10.1371/journal.pone.0270003
Z.F. Udwadia, R.A. Amale, K.K. Ajbani and C. Rodrigues, Clin. Infect. Dis., 54, 579 (2012); https://doi.org/10.1093/cid/cir889
Z.F. Udwadia, J. Assoc. Chest Physicians, 4, 41 (2016); https://doi.org/10.4103/2320-8775.183836
A. Allué-Guardia, J.I. García and J.B. Torrelles, Front. Microbiol., 12, 612675 (2021); https://doi.org/10.3389/fmicb.2021.612675
K.J. Seung, S. Keshavjee and M.L. Rich, Cold Spring Harb. Perspect. Med., 27, a017863 (2015); https://doi.org/10.1101/cshperspect.a017863
A. Zumla, P. Nahid and S.T. Cole, Nat. Rev. Drug Discov., 12, 388 (2013); https://doi.org/10.1038/nrd4001
R. Karan, P. Agarwal, M. Sinha and N. Mahato, ChemEngineering, 5, 73 (2021); https://doi.org/10.3390/chemengineering5040073
J.N. Akester, P. Njaria, A. Nchinda, C.L. Manach, A. Myrick, V. Singh, N. Lawrence, M. Njoroge, D. Taylor, A. Moosa, A.J. Smith, E.J. Brooks, A.J. Lenaerts, G.T. Robertson, T.R. Ioerger, R. Mueller and K. Chibale, ACS Infect. Dis., 6, 1951 (2017); https://doi.org/10.1021/acsinfecdis.0c00252
A.K. Khan, Al-Mustansiriyah J. Sci., 28, 122 (2018); https://doi.org/10.23851/mjs.v28i3.180
E. Jafari, M.R. Khajouei, F. Hassanzadeh, G.H. Hakimelahi and G.A. Khodarahmi, Res. Pharm. Sci., 11, 1 (2016).
K.K. Rajasekhar, N.D. Nizamuddin, A.S. Surur and Y.T. Mekonnen, Res. Rep. Med. Chem., 6, 15 (2016); https://doi.org/10.2147/RRMC.S91474
D. Rozwarski, C. Vilcheze, M. Sugantino, R. Bittman and J. Sacchettini, J. Biol. Chem., 22, 1582 (1999).
C. Vilchèze and W.R. Jacobs Jr., Annu. Rev. Microbiol., 61, 35 (2007); https://doi.org/10.1146/annurev.micro.61.111606.122346
R.P. Massengo-tiasse and J.E. Cronan, Cell. Mol. Life Sci., 66, 1507 (2009); https://doi.org/10.1007/s00018-009-8704-7
S.G. Franzblau, R.S. Witzig, J.C. McLaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and R.H. Gilman, J. Clin. Microb., 36, 362 (1998); https://doi.org/10.1128/JCM.36.2.362-366.1998
S.G. Franzblau, R.S. Witzig, J.C. McLaughlin, P. Torres, G. Madico, A. Hernandez, M.T. Degnan, M.B. Cook, V.K. Quenzer, R.M. Ferguson and R.H. Gilman, J. Clin. Microbiol., 36, 362 (1998); https://doi.org/10.1128/JCM.36.2.362-366.1998
X. He, A. Alian, R. Stroud and P.R. Ortiz de Montellano, J. Med. Chem., 49, 6308 (2006); https://doi.org/10.1021/jm060715y
http://www.chemspider.com/Chemical-Structure.1906.html. Version 2022.0.55.0, Royal Society of Chemistry 2022, 207890.
E. Pettersen, T. Goddard, C. Huang, G. Couch, D. Greenblatt, E. Meng and T. Ferrin, J. Comput. Chem., 25, 1605 (2004); https://doi.org/10.1002/jcc.20084
The PyMOL Molecular Graphics System, version 1.7.4 Schrödinger, LLC.
D. Xu and Y. Zhang, J. Biophys., 101, 2525 (2011); https://doi.org/10.1016/j.bpj.2011.10.024
S.C. Lovell, I.W. Davis, W.B. Arendall III, P.I.W. de Bakker, J.M. Word, M.G. Prisant, J.S. Richardson and D.C. Richardson, Proteins, 50, 437 (2003); https://doi.org/10.1002/prot.10286
http://nihserver.mbi.ucla.edu/SAVES/ (2011).
Molecular operating environment (MOE), 2013.08, Chemical Computing Group Inc., Montreal, QC, Canada, H3A 2R7(2015).