Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microwave-Assisted, Rapid Synthesis of Benzimidazole based Potential Anticancer Agent Methyl 1-benzyl-2-(4-fluoro-3-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate (TJ08) via T3P Mediated Cyclization
Corresponding Author(s) : N.R. Thimmegowda
Asian Journal of Chemistry,
Vol. 35 No. 3 (2023): Vol 35 Issue 3, 2023
Abstract
A novel microwave assisted protocol for the rapid synthesis of methyl 1-benzyl-2-(4-fluoro-3-nitrophenyl)-1H-benzo[d]imidazole-5-carboxylate (TJ08) with potent antileukemic activity has been developed with excellent yields in 31 min of reaction time over 5 steps, whereas the conventional heating method required around 17 h. In this method, n-propanephosphonic acid anhydride (T3P) was used as a coupling reagent for amidation, during this reaction the in situ generated byproduct n-propylphosphonic acid subsequently catalyzes the cyclization reaction to form benzimidazole ring and hence this novel protocol affords to synthesize the novel benzimidazole derivatives expeditiously to develop new druggable compounds.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Henary, C. Kananda, L. Rotolo, B. Savino, E.A. Owens and G. Cravotto, RSC Adv., 10, 14170 (2020); https://doi.org/10.1039/D0RA01378A
- M.B. Gawande, S.N. Shelke, R. Zboril and R.S. Varma, Acc. Chem. Res., 47, 1338 (2014); https://doi.org/10.1021/ar400309b
- A. DiazOrtiz, P. Prieto and A. De La Hoz, Chem. Rec., 19, 85 (2019); https://doi.org/10.1002/tcr.201800059
- A.C. Glass, K.E. Caspary, C. Fisher, C. Whyte, J. Okubo and L.N. Zakharov, SynOpen, 2, 256 (2018); https://doi.org/10.1055/s-0037-1610366
- Y. Ju, D. Kumar and R.S. Varma, J. Org. Chem., 71, 6697 (2006); https://doi.org/10.1021/jo061114h
- H. Rajak, D.K. Jain, P.K. Dewangan, V. Patel and N. Agrawal, RGUHS J. Pharm. Sci., 3, 14 (2013).
- I. Torres-Moya, A. Harbuzaru, B. Donoso, P. Prieto, R.Ponce-Ortiz and Á. Díaz-Ortiz, Molecules, 27, 4340 (2022); https://doi.org/10.3390/molecules27144340
- P.C. Fannin, O.M. Bunoiu, I. Malaescu, C.N. Marin and D. Ursu, Eur. Phys. J. E, 44, 83 (2021); https://doi.org/10.1140/epje/s10189-021-00087-w
- M. Kowalska, M. Wozniak, M. Kijek, P. Mitrosz, J. Szakiel and P. Turek, Sci. Rep., 12, 1 (2022); https://doi.org/10.1038/s41598-021-99269-x
- S.K. Kailasa and H.F. Wu, Comb. Chem. High Throughput Screen., 17, 68 (2014); https://doi.org/10.2174/1386207316666131110211353
- H.M. Al-Matar, M.H. BinSabt and M.A. Shalaby, Molecules, 24, 4435 (2019); https://doi.org/10.3390/molecules24244435
- A.S. Bhatt, R. Ranjitha, M.S. Santosh, C.R. Ravikumar, S.C. Prashantha, R.R. Maphanga and G.F.B.L. Silva, Materials, 13, 2961 (2020); https://doi.org/10.3390/ma13132961
- P.B. Sanchez, S. Tsubaki, A.A.H. Padua and Y. Wada, Phys. Chem. Chem. Phys., 22, 1003 (2020); https://doi.org/10.1039/C9CP06239D
- S.L. Pedersen, A.P. Tofteng, L. Malik and K.J. Jensen, Chem. Soc. Rev., 41, 1826 (2012); https://doi.org/10.1039/C1CS15214A
- S.K. Singh and J.M. Collins, Methods Mol. Biol., 2103, 95 (2020); https://doi.org/10.1007/978-1-0716-0227-0_6
- H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang and X. Yang, Chem. Commun., 34, 5118 (2009); https://doi.org/10.1039/b907612c
- M.C. Bagley, V. Fusillo, R.L. Jenkins, M.C. Lubinu and C. Mason, Beilstein J. Org. Chem., 9, 1957 (2013); https://doi.org/10.3762/bjoc.9.232
- L. Zong, S. Zhou, N. Sgriccia, M.C. Hawley and L.C. Kempel, J. Microw. Power Electromagn. Energy, 38, 49 (2003); https://doi.org/10.1080/08327823.2003.11688487
- N. Kong, M.R. Shimpi, J.H. Park, O. Ramström and M. Yan, Carbohydr. Res., 405, 33 (2015); https://doi.org/10.1016/j.carres.2014.09.006
- B.S.P. Pelle Lidstrom, B.S.P. Jacob Westman and B.S.P. Anthony Lewis, Comb. Chem. High Throughput Screen., 5, 441 (2002); https://doi.org/10.2174/1386207023330147
- K. Martina, G. Cravotto and R.S. Varma, J. Org. Chem., 86, 13857 (2021); https://doi.org/10.1021/acs.joc.1c00865
- S.E. Wolkenberg, W.D. Shipe, C.W. Lindsley, J.P. Guare and J.M. Pawluczyk, Curr. Opin. Drug Discov. Dev., 8, 701 (2005).
- F. Leonetti, C. Capaldi and A. Carotti, Tetrahedron Lett., 48, 3455 (2007); https://doi.org/10.1016/j.tetlet.2007.03.033
- J.G. Swathantraiah, S.M. Srinivasa, A.K. Belagal Motatis, A. Uttarkar, S. Bettaswamygowda, S.B. Thimmaiah, V. Niranjan, S. Rangappa, R.K. Subbegowda and T.N. Ramegowda, ACS Omega, 7, 46955 (2022); https://doi.org/10.1021/acsomega.2c06057
References
M. Henary, C. Kananda, L. Rotolo, B. Savino, E.A. Owens and G. Cravotto, RSC Adv., 10, 14170 (2020); https://doi.org/10.1039/D0RA01378A
M.B. Gawande, S.N. Shelke, R. Zboril and R.S. Varma, Acc. Chem. Res., 47, 1338 (2014); https://doi.org/10.1021/ar400309b
A. DiazOrtiz, P. Prieto and A. De La Hoz, Chem. Rec., 19, 85 (2019); https://doi.org/10.1002/tcr.201800059
A.C. Glass, K.E. Caspary, C. Fisher, C. Whyte, J. Okubo and L.N. Zakharov, SynOpen, 2, 256 (2018); https://doi.org/10.1055/s-0037-1610366
Y. Ju, D. Kumar and R.S. Varma, J. Org. Chem., 71, 6697 (2006); https://doi.org/10.1021/jo061114h
H. Rajak, D.K. Jain, P.K. Dewangan, V. Patel and N. Agrawal, RGUHS J. Pharm. Sci., 3, 14 (2013).
I. Torres-Moya, A. Harbuzaru, B. Donoso, P. Prieto, R.Ponce-Ortiz and Á. Díaz-Ortiz, Molecules, 27, 4340 (2022); https://doi.org/10.3390/molecules27144340
P.C. Fannin, O.M. Bunoiu, I. Malaescu, C.N. Marin and D. Ursu, Eur. Phys. J. E, 44, 83 (2021); https://doi.org/10.1140/epje/s10189-021-00087-w
M. Kowalska, M. Wozniak, M. Kijek, P. Mitrosz, J. Szakiel and P. Turek, Sci. Rep., 12, 1 (2022); https://doi.org/10.1038/s41598-021-99269-x
S.K. Kailasa and H.F. Wu, Comb. Chem. High Throughput Screen., 17, 68 (2014); https://doi.org/10.2174/1386207316666131110211353
H.M. Al-Matar, M.H. BinSabt and M.A. Shalaby, Molecules, 24, 4435 (2019); https://doi.org/10.3390/molecules24244435
A.S. Bhatt, R. Ranjitha, M.S. Santosh, C.R. Ravikumar, S.C. Prashantha, R.R. Maphanga and G.F.B.L. Silva, Materials, 13, 2961 (2020); https://doi.org/10.3390/ma13132961
P.B. Sanchez, S. Tsubaki, A.A.H. Padua and Y. Wada, Phys. Chem. Chem. Phys., 22, 1003 (2020); https://doi.org/10.1039/C9CP06239D
S.L. Pedersen, A.P. Tofteng, L. Malik and K.J. Jensen, Chem. Soc. Rev., 41, 1826 (2012); https://doi.org/10.1039/C1CS15214A
S.K. Singh and J.M. Collins, Methods Mol. Biol., 2103, 95 (2020); https://doi.org/10.1007/978-1-0716-0227-0_6
H. Zhu, X. Wang, Y. Li, Z. Wang, F. Yang and X. Yang, Chem. Commun., 34, 5118 (2009); https://doi.org/10.1039/b907612c
M.C. Bagley, V. Fusillo, R.L. Jenkins, M.C. Lubinu and C. Mason, Beilstein J. Org. Chem., 9, 1957 (2013); https://doi.org/10.3762/bjoc.9.232
L. Zong, S. Zhou, N. Sgriccia, M.C. Hawley and L.C. Kempel, J. Microw. Power Electromagn. Energy, 38, 49 (2003); https://doi.org/10.1080/08327823.2003.11688487
N. Kong, M.R. Shimpi, J.H. Park, O. Ramström and M. Yan, Carbohydr. Res., 405, 33 (2015); https://doi.org/10.1016/j.carres.2014.09.006
B.S.P. Pelle Lidstrom, B.S.P. Jacob Westman and B.S.P. Anthony Lewis, Comb. Chem. High Throughput Screen., 5, 441 (2002); https://doi.org/10.2174/1386207023330147
K. Martina, G. Cravotto and R.S. Varma, J. Org. Chem., 86, 13857 (2021); https://doi.org/10.1021/acs.joc.1c00865
S.E. Wolkenberg, W.D. Shipe, C.W. Lindsley, J.P. Guare and J.M. Pawluczyk, Curr. Opin. Drug Discov. Dev., 8, 701 (2005).
F. Leonetti, C. Capaldi and A. Carotti, Tetrahedron Lett., 48, 3455 (2007); https://doi.org/10.1016/j.tetlet.2007.03.033
J.G. Swathantraiah, S.M. Srinivasa, A.K. Belagal Motatis, A. Uttarkar, S. Bettaswamygowda, S.B. Thimmaiah, V. Niranjan, S. Rangappa, R.K. Subbegowda and T.N. Ramegowda, ACS Omega, 7, 46955 (2022); https://doi.org/10.1021/acsomega.2c06057