Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Applications of Supramolecular Materials in Real World: A Mini Review
Corresponding Author(s) : Anshupriya Shome
Asian Journal of Chemistry,
Vol. 35 No. 2 (2023): Vol 35 Issue 2, 2023
Abstract
The breakthrough in supramolecular chemistry came in the 1960s when Charles J. Pedersen utilized the concept of ‘chemistry beyond molecules’ in the synthesis of the crown ethers. Self-assembly could allow for the construction of fascinating supramolecular architectures that are otherwise challenging to prepare using covalent chemistry. Supramolecular chemistry has been extensively studied in recent decades and its applications have been explored to include everything from molecular machines and sensors to gas absorption and nanoreactors to chemical catalysis and drug delivery. In this review article, some of the commercial applications are discussed to highlight the transition of supramolecular chemistry from theoretical concept to market.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci. USA, 99, 4769 (2002); https://doi.org/10.1073/pnas.082065899
- D.V. Soldatov and I.S. Terekhova, J. Struct. Chem., 46(S1), S1 (2005); https://doi.org/10.1007/s10947-006-0143-9
- J.-M. Lehn, Angew. Chem. Int. Ed. Engl., 29, 1304 (1990); https://doi.org/10.1002/anie.199013041
- E.V. Lampard, A.C. Sedgwick, T. Sombuttan, G.T. Williams, B. Wannalerse, A.T.A. Jenkins, S.D. Bull and T.D. James, ChemistryOpen, 7, 266 (2018); https://doi.org/10.1002/open.201700193
- G.T. Williams, A.C. Sedgwick, S. Sen, L. Gwynne, J.E. Gardiner, J.T. Brewster, J.R. Hiscock, T.D. James, A.T.A. Jenkins and J.L. Sessler, Chem. Commun., 56, 5516 (2020); https://doi.org/10.1039/D0CC01904F
- S. Mann, Nat. Mater., 8, 781 (2009); https://doi.org/10.1038/nmat2496
- X.Z. Yan, F. Wang, B. Zheng and F.H. Huang, Chem. Soc. Rev., 41, 6042 (2012); https://doi.org/10.1039/c2cs35091b
- D.G. Bekas, K. Tsirka, D. Baltzis and A.S. Paipetis, Composites B Eng., 87, 92 (2016); https://doi.org/10.1016/j.compositesb.2015.09.057
- https://www.nobelprize.org/prizes/chemistry/1987/press-release
- https://www.nobelprize.org/prizes/chemistry/2016/summary
- F. Huang and E.V. Anslyn, Chem. Rev., 115, 6999 (2015); https://doi.org/10.1021/acs.chemrev.5b00352
- J.M. Lehn, Chem. Soc. Rev., 46, 2378 (2017); https://doi.org/10.1039/C7CS00115K
- M. Nakahata, S. Mori, Y. Takashima, H. Yamaguchi and A. Harada, Chem, 1, 766 (2016); https://doi.org/10.1016/j.chempr.2016.09.013
- T. Trinh, J.P. Cappel, P.A. Geis, M.L. McCarty, D. Pilosof and S.S. Zwerdling, Uncomplexed Cyclodextrin Solutions for Odor Control on Inanimate Surfaces, US Patent, US5714137A (1998).
- J. Wu, L.-H. Cai and D.A. Weitz, Adv. Mater., 29, 1702616 (2017); https://doi.org/10.1002/adma.201702616
- G.T. Williams, C.J.E. Haynes, M. Fares, C. Caltagirone, J.R. Hiscock and P.A. Gale, Chem. Soc. Rev., 50, 2737 (2021); https://doi.org/10.1039/D0CS00948B
- I.V. Kolesnichenko and E.V. Anslyn, Chem. Soc. Rev., 46, 2385 (2017); https://doi.org/10.1039/C7CS00078B
- H. Cui and B. Xu, Chem. Soc. Rev., 46, 6430 (2017); https://doi.org/10.1039/C7CS90102J
- L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood and S. Hua, Front. Pharmacol., 6, 286 (2015); https://doi.org/10.3389/fphar.2015.00286
- D.D. Lasic, Nature, 380, 561 (1996); https://doi.org/10.1038/380561a0
- A. Gabizon, A. Dagan, D. Goren, Y. Barenholz and Z. Fuks, Cancer Res., 42, 4734 (1982)
- G.A. Koning and G. Storm, Drug Discov. Today, 8, 482 (2003); https://doi.org/10.1016/S1359-6446(03)02699-0
- S. Hua and S.Y. Wu, Front. Pharmacol., 4, 143 (2013).
- A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra and R. Cohen, Cancer Res., 54, 987 (1994).
- A. Gabizon, R. Chisin, S. Amselem, S. Druckmann, R. Cohen, D. Goren, I. Fromer, T. Peretz, A. Sulkes and Y. Barenholz, Br. J. Cancer, 64, 1125 (1991); https://doi.org/10.1038/bjc.1991.476
- A. Puri, K. Loomis, B. Smith, J.H. Lee, A. Yavlovich, E. Heldman and R. Blumenthal, Crit. Rev. Ther. Drug Carrier Syst., 26, 523 (2009); https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
- V.P. Torchilin, A.L. Klibanov, L. Huang, S. O’Donnell, N.D. Nossiff and B.A. Khaw, FASEB J., 6, 2716 (1992); https://doi.org/10.1096/fasebj.6.9.1612296
- M.H. Vingerhoeds, G. Storm and D.J. Crommelin, ImmunoMethods, 4, 259 (1994); https://doi.org/10.1006/immu.1994.1028
- E. Forssen and M. Willis, Adv. Drug Deliv. Rev., 29, 249 (1998); https://doi.org/10.1016/S0169-409X(97)00083-5
- C.O. Noble, D.B. Kirpotin, M.E. Hayes, C. Mamot, K. Hong, J.W. Park, C.C. Benz, J.D. Marks and D.C. Drummond, Expert Opin. Ther. Targets, 8, 335 (2004); https://doi.org/10.1517/14728222.8.4.335
- P.P. Deshpande, S. Biswas and V.P. Torchilin, Nanomedicine, 8, 1509 (2013); https://doi.org/10.2217/nnm.13.118
- J. Rip, L. Chen, R. Hartman, A. van den Heuvel, A. Reijerkerk, J. van Kregten, B. van der Boom, C. Appeldoorn, M. de Boer, D. Maussang, E.C.M. de Lange and P.J. Gaillard, J. Drug Target., 22, 460 (2014); https://doi.org/10.3109/1061186X.2014.888070
- S. Fu, Y. Zhao, J. Sun, T. Yang, D. Zhi, E. Zhang, F. Zhong, Y. Zhen, S. Zhang and S. Zhang, Colloids Surf. B: Biointerfaces, 201, 111623 (2021); https://doi.org/10.1016/j.colsurfb.2021.111623
- F. Rommasi and N. Esfandiari, Nanoscale Res. Lett., 16, 95 (2021); https://doi.org/10.1186/s11671-021-03553-8
- A. Gabizon, A.T. Horowitz, D. Goren, D. Tzemach, H. Shmeeda and S. Zalipsky, Clin. Cancer Res., 9, 6551 (2003).
- S. Hua and P.J. Cabot, Pain Physician, 3, E199 (2013); https://doi.org/10.36076/ppj.2013/16/E199
- J.W. Park, K. Hong, D.B. Kirpotin, G. Colbern, R. Shalaby and J. Baselga, Clin. Cancer Res., 8, 1172 (2002).
- M.L. Bender and M. Komiyama, Cyclodextrin Chemistry; Springer- Verlag: Berlin (1978).
- W. Saenger, Angew. Chem. Int. Ed. Engl., 19, 344 (1980); https://doi.org/10.1002/anie.198003441
- J. Szejtli, Cyclodextrins and their Inclusion Complexes; Akademiai Kiado: Budapest (1982).
- K. Uekama, F. Hirayama and T. Irie, Chem. Rev., 98, 2045 (1998); https://doi.org/10.1021/cr970025p
- A. Gonzalez Pereira, M. Carpena, P. García Oliveira, J.C. Mejuto, M.A. Prieto and J. Simal Gandara, Int. J. Mol. Sci., 22, 1339 (2021); https://doi.org/10.3390/ijms22031339
- M. Centini, M. Maggiore, M. Casolaro, M. Andreassi, R. Maffei Facino and C. Anselmi, J. Incl. Phenom. Macrocycl. Chem., 57, 109 (2007); https://doi.org/10.1007/s10847-006-9212-0
- Q.-D. Hu, G.-P. Tang and P.K. Chu, Acc. Chem. Res., 47, 2017 (2014); https://doi.org/10.1021/ar500055s
- G. Wenz, Angew. Chem. Int. Ed. Engl., 33, 803 (1994); https://doi.org/10.1002/anie.199408031
- A. Matencio, S. Navarro-Orcajada, F. García-Carmona and J.M. López- Nicolás, Trends Food Sci. Technol., 104, 132 (2020); https://doi.org/10.1016/j.tifs.2020.08.009
- L. Almagro and M.Á. Pedreño, Phytochem. Rev., 19, 1061 (2020); https://doi.org/10.1007/s11101-020-09704-6
- P.P. Menezes, T.A. Andrade, L.A. Frank, E.P.B.S.S. de Souza, G.G.G. Trindade, I.A.S. Trindade, M.R. Serafini, S.S. Guterres and A.A.S. Araújo, Int. J. Pharm., 559, 312 (2019); https://doi.org/10.1016/j.ijpharm.2019.01.041
- K. Uekama, T. Fujinaga, F. Hirayama, M. Otagiri, M. Yamasaki, H. Seo, T. Hashimoto and M. Tsuruoka, J. Pharm. Sci., 72, 1338 (1983); https://doi.org/10.1002/jps.2600721125
- K. Uekama, T. Fujinaga, F. Hirayama, M. Otagiri, Y. Kurono and K. Ikeda, J. Pharm. Pharmacol., 34, 627 (2011); https://doi.org/10.1111/j.2042-7158.1982.tb04690.x
- H.-J. Shu, C.-M. Zeng, C. Wang, D.F. Covey, C.F. Zorumski and S. Mennerick, Br. J. Pharmacol., 150, 164 (2007); https://doi.org/10.1038/sj.bjp.0706973
- J. Pitha, S.M. Harman and M.E. Michel, J. Pharm. Sci., 75, 165 (1986); https://doi.org/10.1002/jps.2600750213
- G.T. Taylor, J. Weiss and J. Pitha, Pharm. Res., 6, 641 (1989); https://doi.org/10.1023/A:1015922019038
- C.A. Stuenkel, R.E. Dudley and S.S.C. Yen, J. Clin. Endocrinol. Metab., 72, 1054 (1991); https://doi.org/10.1210/jcem-72-5-1054
- B. Salehian, C. Wang, J. Alexander, T. Davidson, V. McDonald, N. Berman, R.E. Dudley, F. Ziel and R.S. Swerdloff, J. Clin. Endocrinol. Metab., 80, 3567 (1995); https://doi.org/10.1210/jcem.80.12.8530600
- H. Fridriksdo’ttir, T. Loftsson, J.A. Gudmundsson, G.J. Bjarnason, M. Kjeld and T. Thorsteinsson, Pharmazie, 51, 39 (1996).
- A. Usayapant, A.H. Karara and M.M. Narurkar, Pharm. Res., 8, 1495 (1991); https://doi.org/10.1023/A:1015838215268
- P. Jarho, A. Urtti, K. Ja ̈rvinen, D.W. Pate and T. Jarvinen, Life Sci., 58, 181 (1996); https://doi.org/10.1016/0024-3205(96)00024-0
- P. Jarho, A. Urtti, D.W. Pate, P. Suhonen and T. Jarvinen, Int. J. Pharm., 137, 209 (1996); https://doi.org/10.1016/0378-5173(96)04522-X
- K. Imamachi, E. Stefansson, A. Ohira and M. Tanito, Acta Ophthalmol., 97, 824 (2019); https://doi.org/10.1111/aos.14119
- B. Tian, S. Hua and J. Liu, Carbohydr. Polym., 232, 115805 (2020); https://doi.org/10.1016/j.carbpol.2019.115805
- M. Singh, R. Sharma and U.C. Banerjee, Biotechnol. Adv., 20, 341 (2002); https://doi.org/10.1016/S0734-9750(02)00020-4
- J.-F. Chen, Q. Lin, Y.-M. Zhang, H. Yao and T.-B. Wei, Chem. Commun., 53, 13296 (2017); https://doi.org/10.1039/C7CC08365C
- N. Kaur, G. Kaur, U.A. Fegade, A. Singh, S.K. Sahoo, A.S. Kuwar and N. Singh, TrAC-Trends Analyt. Chem., 95, 86 (2017); https://doi.org/10.1016/j.trac.2017.08.003
- Q. Wang, Z. Li, D.-D. Tao, Q. Zhang, P. Zhang, D.-P. Guo and Y.-B. Jiang, Chem. Commun., 52, 12929 (2016); https://doi.org/10.1039/C6CC06075G
- G. Sriram, M.P. Bhat, P. Patil, U.T. Uthappa, H.-Y. Jung, T. Altalhi, T. Kumeria, T.M. Aminabhavi, R.K. Pai, Madhuprasad and M.D. Kurkuri, TrAC-Trends Analyt. Chem., 93, 212 (2017); https://doi.org/10.1016/j.trac.2017.06.005
- L. Tang and J. Li, ACS Sens., 2, 857 (2017); https://doi.org/10.1021/acssensors.7b00282
- P.V.S. Ajay, J. Printo, D.S.C.G. Kiruba, L. Susithra, K. Takatoshi and M. Sivakumar, Mater. Sci. Eng. C, 78, 1231 (2017); https://doi.org/10.1016/j.msec.2017.05.018
- H. Pu, W. Xiao and D.-W. Sun, Trends Food Sci. Technol., 70, 114 (2017); https://doi.org/10.1016/j.tifs.2017.10.001
- W. Xi, B.K. Shrestha and A.J. Haes, Anal. Chem., 90, 128 (2018); https://doi.org/10.1021/acs.analchem.7b04225
- S. Arif, S. Qudsia, S. Urooj, N. Chaudry, A. Arshad and S. Andleeb, Biosens. Bioelectron., 65, 62 (2015); https://doi.org/10.1016/j.bios.2014.09.088
- K.M.M. Kabir, S.J. Ippolito, A.E. Kandjani, Y.M. Sabri and S.K. Bhargava, Trends Analyt. Chem., 88, 77 (2017); https://doi.org/10.1016/j.trac.2016.12.009
- P. Skladal, Trends Analyt. Chem., 79, 127 (2016); https://doi.org/10.1016/j.trac.2015.12.009
- C. Zhao, M.H. Montaseri, G.S. Wood, S.H. Pu, A.A. Seshia and M. Kraft, Sens. Actuators A Phys., 249, 93 (2016); https://doi.org/10.1016/j.sna.2016.07.015
- J. Liu, M. Xu, B. Wang, Z. Zhou and L. Wang, RSC Adv., 7, 1432 (2017);https://doi.org/10.1039/C6RA24793H
- T.A. Shumilova, T. Rüffer, H. Lang and E.A. Kataev, Chem. Eur. J., 24, 1500 (2018); https://doi.org/10.1002/chem.201704098
- T.L. Mako, J.M. Racicot and M. Levine, Chem. Rev., 119, 322 (2019); https://doi.org/10.1021/acs.chemrev.8b00260
- S. Uchiyama, E. Fukatsu, G.D. McClean and A.P. de Silva, Angew. Chem. Int. Ed., 55, 768 (2016); https://doi.org/10.1002/anie.201509096
- A.P. De Silva, T.P. Vance, M.E.S. West and G.D. Wright, Org. Biomol. Chem., 6, 2468 (2008); https://doi.org/10.1039/b802963f
- J.K. Tusa and H. He, J. Mater. Chem., 15, 2640 (2005); https://doi.org/10.1039/b503172a
- F.M. Harold, The Vital Force-A Study of Bioenergetics, Freeman: New York, pp. 318-332 (1986).
- A.P. de Silva and K.R.A.S. Sandanayake, J. Chem. Soc. Chem. Commun.,16, 1183 (1989); https://doi.org/10.1039/c39890001183
- R.M. Izatt, R.E. Terry, D.P. Nelson, D.J. Eatough, J.S. Bradshaw, Y. Chan, L.D. Hansen and J.J. Christensen, J. Am. Chem. Soc., 98, 7626 (1976); https://doi.org/10.1021/ja00440a029
- C.D. Tran and T.A. Van Fleet, Anal. Chem., 60, 2478 (1988); https://doi.org/10.1021/ac00173a009
- A.P. de Silva and K.R.A.S. Sandanayake, Tetrahedron Lett., 32, 421 (1991); https://doi.org/10.1016/S0040-4039(00)92644-3
- www.optimedical.com
- B. Bag and P.K. Bharadwaj, Chem. Commun., 4, 513 (2005); https://doi.org/10.1039/b413274b
- Y. Mamo, F. Bekele, T. Nigussie and A. Zewudie, BMC Endocr. Disord., 19, 91 (2019); https://doi.org/10.1186/s12902-019-0421-0
- D.C. Klonoff, D. Ahn and A. Drincic, Diabetes Res. Clin. Pract., 133, 178 (2017); https://doi.org/10.1016/j.diabres.2017.08.005
- A. Wood, D. O’Neal, J. Furler and E.I. Ekinci, Intern. Med. J., 48, 499 (2018); https://doi.org/10.1111/imj.13770
- J.P. Lorand and J.O. Edwards, J. Org. Chem., 24, 769 (1959); https://doi.org/10.1021/jo01088a011
- G. Wulff, Pure Appl. Chem., 54, 2093 (1982); https://doi.org/10.1351/pac198254112093
- H. Fang, G. Kaur and B. Wang, J. Fluoresc., 14, 481 (2004); https://doi.org/10.1023/B:JOFL.0000039336.51399.3b
- Z. Guo, I. Shin and J. Yoon, Chem. Commun., 48, 5956 (2012); https://doi.org/10.1039/c2cc31985c
- X. Sun, B.M. Chapin, P. Metola, B. Collins, B. Wang, T.D. James and E.V. Anslyn, Nat. Chem., 11, 768 (2019); https://doi.org/10.1038/s41557-019-0314-x
- B.C. Crane, N.P. Barwell, P. Gopal, M. Gopichand, T. Higgs, T.D. James, C.M. Jones, A. Mackenzie, K.P. Mulavisala and W. Paterson, J. Diabetes Sci. Technol., 9, 751 (2015); https://doi.org/10.1177/1932296815587937
- M. Mortellaro and A. DeHennis, Biosens. Bioelectron., 61, 227 (2014); https://doi.org/10.1016/j.bios.2014.05.022
- T. D. James (2019); https://chemistrycommunity.nature.com/posts/53695-measure-for-measure-fluorescent-boronic-acid-sensors-for-continuous-monitoring-of-glucose-based-on-ortho-aminomethylphenylboronic-acids-an-ongoing-shakespearian-drama (accessed 29/11/2020).
- Y. Zhao, S. Song, X. Ren, J. Zhang, Q. Lin and Y. Zhao, Chem. Rev., 122, 5604 (2022); https://doi.org/10.1021/acs.chemrev.1c00815
- K. Fu, D.W. Pack, A.M. Klibanov and R. Langer, Pharm. Res., 17, 100 (2000); https://doi.org/10.1023/A:1007582911958
- J.S. Boateng, K.H. Matthews, H.N. Stevens and G.M. Eccleston, J. Pharm. Sci., 97, 2892 (2008); https://doi.org/10.1002/jps.21210
- J. Boekhoven and S.I. Stupp, Adv. Mater., 26, 1642 (2014); https://doi.org/10.1002/adma.201304606
- J.-M. Lehn, Polym. Int., 51, 825 (2002); https://doi.org/10.1002/pi.852
- T. Aida, E.W. Meijer and S.I. Stupp, Science, 335, 813 (2012); https://doi.org/10.1126/science.1205962
- R. Dong, Y. Zhou, X. Huang, X. Zhu, Y. Lu and J. Shen, Adv. Mater., 27, 498 (2015); https://doi.org/10.1002/adma.201402975
- H. Cui, M.J. Webber and S.I. Stupp, Biopolymers, 94, 1 (2010); https://doi.org/10.1002/bip.21328
- C.B. Herbert, T.L. McLernon, C.L. Hypolite, D.N. Adams, L. Pikus, C.-C. Huang, G.B. Fields, P.C. Letourneau, M.D. Distefano and W.-S. Hu, Chem. Biol., 4, 731 (1997); https://doi.org/10.1016/S1074-5521(97)90311-2
- M. Mrksich, Acta Biomater., 5, 832 (2009); https://doi.org/10.1016/j.actbio.2009.01.016
- S. Zhang, Nat. Biotechnol., 21, 1171 (2003); https://doi.org/10.1038/nbt874
- K.B. McClary, T. Ugarova and D.W. Grainger, J. Biomed. Mater. Res., 50, 428 (2000); https://doi.org/10.1002/(SICI)1097-4636(20000605)50:3<428::AID-JBM18>3.0.CO;2-H
- C. Roberts, C.S. Chen, M. Mrksich, V. Martichonok, D.E. Ingber and G.M. Whitesides, J. Am. Chem. Soc., 120, 6548 (1998); https://doi.org/10.1021/ja972467o
- G. Cheng, V. Castelletto, R. Jones, J. Connon and I.W. Hamley, Soft Matter, 7, 1326 (2011); https://doi.org/10.1039/C0SM00408A
- L. Ikonen, E. Kerkelä, G. Metselaar, M.C. Stuart, M.R. de Jong and K. Aalto-Setälä, BioMed Res. Int., 2013, 285678 (2013); https://doi.org/10.1155/2013/285678
- X.Q. Dou, P. Li, D. Zhang and C.L. Feng, J. Mater. Chem. B Mater. Biol. Med., 1, 3562 (2013); https://doi.org/10.1039/c3tb20155d
- D.J. Welsh, P. Posocco, S. Pricl and D.K. Smith, Org. Biomol. Chem., 11, 3177 (2013); https://doi.org/10.1039/c3ob00034f
- M.R. Dreher, A.J. Simnick, K. Fischer, R.J. Smith, A. Patel, M. Schmidt and A. Chilkoti, J. Am. Chem. Soc., 130, 687 (2008); https://doi.org/10.1021/ja0764862
- J.A. Zupancich, F.S. Bates and M.A. Hillmyer, Biomacromolecules, 10, 1554 (2009); https://doi.org/10.1021/bm900149b
- P.Y. Dankers, M.C. Harmsen, L.A. Brouwer, M.J. van Luyn and E.W. Meijer, Nat. Mater., 4, 568 (2005); https://doi.org/10.1038/nmat1418
- S. Sur, J.B. Matson, M.J. Webber, C.J. Newcomb and S.I. Stupp, ACS Nano, 6, 10776 (2012); https://doi.org/10.1021/nn304101x
- H. Storrie, M.O. Guler, S.N. Abu-Amara, T. Volberg, M. Rao, B. Geiger and S.I. Stupp, Biomaterials, 28, 4608 (2007); https://doi.org/10.1016/j.biomaterials.2007.06.026
- M.J. Webber, J. Tongers, M.A. Renault, J.G. Roncalli, D.W. Losordo and S.I. Stupp, Acta Biomater., 6, 3 (2010);
- https://doi.org/10.1016/j.actbio.2009.07.031
- H. Hosseinkhani, M. Hosseinkhani and H. Kobayashi, J. Bioact. Compatib. Polym., 21, 277 (2006); https://doi.org/10.1177/0883911506066934
- H. Hosseinkhani, M. Hosseinkhani, F. Tian, H. Kobayashi and Y. Tabata, Biomaterials, 27, 4079 (2006); https://doi.org/10.1016/j.biomaterials.2006.03.030
- H. Hosseinkhani, P.-D. Hong and D.-S. Yu, Chem. Rev., 113, 4837 (2013); https://doi.org/10.1021/cr300131h
- Z. Huang, C.J. Newcomb, P. Bringas Jr., S.I. Stupp and M.L. Snead, Biomaterials, 31, 9202 (2010); https://doi.org/10.1016/j.biomaterials.2010.08.013
- Z. Huang, C.J. Newcomb, Y. Zhou, Y.P. Lei, P. Bringas Jr., S.I. Stupp and M.L. Snead, Biomaterials, 34, 3303 (2013); https://doi.org/10.1016/j.biomaterials.2013.01.054
- O.J.G.M. Goor, S.I.S. Hendrikse, P.Y.W. Dankers and E.W. Meijer, Chem. Soc. Rev., 46, 6621 (2017); https://doi.org/10.1039/C7CS00564D
- Shome Asian J. Chem.
- A. Aggeli, M. Bell, L.M. Carrick, C.W.G. Fishwick, R. Harding, P.J. Mawer, S.E. Radford, A.E. Strong and N. Boden, J. Am. Chem. Soc., 125, 9619 (2003); https://doi.org/10.1021/ja021047i
- J. Kirkham, A. Firth, D. Vernals, N. Boden, C. Robinson, R.C. Shore, S.J. Brookes and A. Aggeli, J. Dent. Res., 86, 426 (2007); https://doi.org/10.1177/154405910708600507
- R.N. Shah, N.A. Shah, M.M. Del Rosario Lim, C. Hsieh, G. Nuber and S.I. Stupp, Proc. Natl. Acad. Sci. USA, 107, 3293 (2010); https://doi.org/10.1073/pnas.0906501107
- A.S. Mao and D.J. Mooney, Proc. Natl. Acad. Sci. USA, 112, 14452 (2015); https://doi.org/10.1073/pnas.1508520112
- G. Sinawang, M. Osaki, Y. Takashima, H. Yamaguchi and A. Harada, Chem. Commun., 56, 4381 (2020); https://doi.org/10.1039/D0CC00672F
- https://europe.nissannews.com/en-GB/releases/release-87812
- F.M. Raymo and J.F. Stoddart, Chem. Rev., 99, 1643 (1999); https://doi.org/10.1021/cr970081q
- J.F. Stoddart, Angew. Chem. Int. Ed., 56, 11094 (2017); https://doi.org/10.1002/anie.201703216
- L. Fang, M.A. Olson, D. Benitez, E. Tkatchouk, W.A. Goddard III and J.F. Stoddart, Chem. Soc. Rev., 39, 17 (2010); https://doi.org/10.1039/B917901A
- T. Takata, Polym. J., 38, 1 (2006); https://doi.org/10.1295/polymj.38.1
- A.W. Heard and S.M. Goldup, ACS Cent. Sci., 6, 117 (2020); https://doi.org/10.1021/acscentsci.9b01185
- J. Araki and K. Ito, Soft Matter, 3, 1456 (2007); https://doi.org/10.1039/b705688e
- J.J. Li, F. Zhao and J. Li, Appl. Microbiol. Biotechnol., 90, 427 (2011); https://doi.org/10.1007/s00253-010-3037-x
- I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, Science, 334, 75 (2011); https://doi.org/10.1126/science.1209150
- S. Choi, T.W. Kwon, A. Coskun and J.W. Choi, Science, 357, 279 (2017); https://doi.org/10.1126/science.aal4373
- A.M. Wilson, P.J. Bailey, P.A. Tasker, J.R. Turkington, R.A. Grant and J.B. Love, Chem. Soc. Rev., 43, 123 (2014); https://doi.org/10.1039/C3CS60275C
- M.D. Rao, K.K. Singh, C.A. Morrison and J.B. Love, RSC Adv., 10, 4300 (2020); https://doi.org/10.1039/C9RA07607G
- C. Hageluken and C.W. Corti, Gold Bull., 43, 209 (2010); https://doi.org/10.1007/BF03214988
- L.X. Chen, M. Liu, Y.Q. Zhang, Q.J. Zhu, J.X. Liu, B.X. Zhu and Z. Tao, Chem. Commun., 55, 14271 (2019); https://doi.org/10.1039/C9CC07147D
- cycladex, http://cycladex.com/
- D.D. Walker, M.A. Norato, S.G. Campbell, M.L. Crowder, S.D. Fink, F.F. Fondeur, M.W. Geeting, G.F. Kessinger and R.A. Pierce, Sep. Sci. Technol., 40, 297 (2005); https://doi.org/10.1081/SS-200042239
- P. Klemarczyk and J. Guthrie, Advances in Structural Adhesive Bonding, Woodhead Publishing in Materials, pp. 96-131 (2010).
- S.J. Harris, M.A. McKervey, D.P. Melody, J. Woods and J.M. Rooney, Instant Adhesive Composition Utilizing Calixarene Accelerators, US Patent 4556700 (1985).
References
G.M. Whitesides and M. Boncheva, Proc. Natl. Acad. Sci. USA, 99, 4769 (2002); https://doi.org/10.1073/pnas.082065899
D.V. Soldatov and I.S. Terekhova, J. Struct. Chem., 46(S1), S1 (2005); https://doi.org/10.1007/s10947-006-0143-9
J.-M. Lehn, Angew. Chem. Int. Ed. Engl., 29, 1304 (1990); https://doi.org/10.1002/anie.199013041
E.V. Lampard, A.C. Sedgwick, T. Sombuttan, G.T. Williams, B. Wannalerse, A.T.A. Jenkins, S.D. Bull and T.D. James, ChemistryOpen, 7, 266 (2018); https://doi.org/10.1002/open.201700193
G.T. Williams, A.C. Sedgwick, S. Sen, L. Gwynne, J.E. Gardiner, J.T. Brewster, J.R. Hiscock, T.D. James, A.T.A. Jenkins and J.L. Sessler, Chem. Commun., 56, 5516 (2020); https://doi.org/10.1039/D0CC01904F
S. Mann, Nat. Mater., 8, 781 (2009); https://doi.org/10.1038/nmat2496
X.Z. Yan, F. Wang, B. Zheng and F.H. Huang, Chem. Soc. Rev., 41, 6042 (2012); https://doi.org/10.1039/c2cs35091b
D.G. Bekas, K. Tsirka, D. Baltzis and A.S. Paipetis, Composites B Eng., 87, 92 (2016); https://doi.org/10.1016/j.compositesb.2015.09.057
https://www.nobelprize.org/prizes/chemistry/1987/press-release
https://www.nobelprize.org/prizes/chemistry/2016/summary
F. Huang and E.V. Anslyn, Chem. Rev., 115, 6999 (2015); https://doi.org/10.1021/acs.chemrev.5b00352
J.M. Lehn, Chem. Soc. Rev., 46, 2378 (2017); https://doi.org/10.1039/C7CS00115K
M. Nakahata, S. Mori, Y. Takashima, H. Yamaguchi and A. Harada, Chem, 1, 766 (2016); https://doi.org/10.1016/j.chempr.2016.09.013
T. Trinh, J.P. Cappel, P.A. Geis, M.L. McCarty, D. Pilosof and S.S. Zwerdling, Uncomplexed Cyclodextrin Solutions for Odor Control on Inanimate Surfaces, US Patent, US5714137A (1998).
J. Wu, L.-H. Cai and D.A. Weitz, Adv. Mater., 29, 1702616 (2017); https://doi.org/10.1002/adma.201702616
G.T. Williams, C.J.E. Haynes, M. Fares, C. Caltagirone, J.R. Hiscock and P.A. Gale, Chem. Soc. Rev., 50, 2737 (2021); https://doi.org/10.1039/D0CS00948B
I.V. Kolesnichenko and E.V. Anslyn, Chem. Soc. Rev., 46, 2385 (2017); https://doi.org/10.1039/C7CS00078B
H. Cui and B. Xu, Chem. Soc. Rev., 46, 6430 (2017); https://doi.org/10.1039/C7CS90102J
L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood and S. Hua, Front. Pharmacol., 6, 286 (2015); https://doi.org/10.3389/fphar.2015.00286
D.D. Lasic, Nature, 380, 561 (1996); https://doi.org/10.1038/380561a0
A. Gabizon, A. Dagan, D. Goren, Y. Barenholz and Z. Fuks, Cancer Res., 42, 4734 (1982)
G.A. Koning and G. Storm, Drug Discov. Today, 8, 482 (2003); https://doi.org/10.1016/S1359-6446(03)02699-0
S. Hua and S.Y. Wu, Front. Pharmacol., 4, 143 (2013).
A. Gabizon, R. Catane, B. Uziely, B. Kaufman, T. Safra and R. Cohen, Cancer Res., 54, 987 (1994).
A. Gabizon, R. Chisin, S. Amselem, S. Druckmann, R. Cohen, D. Goren, I. Fromer, T. Peretz, A. Sulkes and Y. Barenholz, Br. J. Cancer, 64, 1125 (1991); https://doi.org/10.1038/bjc.1991.476
A. Puri, K. Loomis, B. Smith, J.H. Lee, A. Yavlovich, E. Heldman and R. Blumenthal, Crit. Rev. Ther. Drug Carrier Syst., 26, 523 (2009); https://doi.org/10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
V.P. Torchilin, A.L. Klibanov, L. Huang, S. O’Donnell, N.D. Nossiff and B.A. Khaw, FASEB J., 6, 2716 (1992); https://doi.org/10.1096/fasebj.6.9.1612296
M.H. Vingerhoeds, G. Storm and D.J. Crommelin, ImmunoMethods, 4, 259 (1994); https://doi.org/10.1006/immu.1994.1028
E. Forssen and M. Willis, Adv. Drug Deliv. Rev., 29, 249 (1998); https://doi.org/10.1016/S0169-409X(97)00083-5
C.O. Noble, D.B. Kirpotin, M.E. Hayes, C. Mamot, K. Hong, J.W. Park, C.C. Benz, J.D. Marks and D.C. Drummond, Expert Opin. Ther. Targets, 8, 335 (2004); https://doi.org/10.1517/14728222.8.4.335
P.P. Deshpande, S. Biswas and V.P. Torchilin, Nanomedicine, 8, 1509 (2013); https://doi.org/10.2217/nnm.13.118
J. Rip, L. Chen, R. Hartman, A. van den Heuvel, A. Reijerkerk, J. van Kregten, B. van der Boom, C. Appeldoorn, M. de Boer, D. Maussang, E.C.M. de Lange and P.J. Gaillard, J. Drug Target., 22, 460 (2014); https://doi.org/10.3109/1061186X.2014.888070
S. Fu, Y. Zhao, J. Sun, T. Yang, D. Zhi, E. Zhang, F. Zhong, Y. Zhen, S. Zhang and S. Zhang, Colloids Surf. B: Biointerfaces, 201, 111623 (2021); https://doi.org/10.1016/j.colsurfb.2021.111623
F. Rommasi and N. Esfandiari, Nanoscale Res. Lett., 16, 95 (2021); https://doi.org/10.1186/s11671-021-03553-8
A. Gabizon, A.T. Horowitz, D. Goren, D. Tzemach, H. Shmeeda and S. Zalipsky, Clin. Cancer Res., 9, 6551 (2003).
S. Hua and P.J. Cabot, Pain Physician, 3, E199 (2013); https://doi.org/10.36076/ppj.2013/16/E199
J.W. Park, K. Hong, D.B. Kirpotin, G. Colbern, R. Shalaby and J. Baselga, Clin. Cancer Res., 8, 1172 (2002).
M.L. Bender and M. Komiyama, Cyclodextrin Chemistry; Springer- Verlag: Berlin (1978).
W. Saenger, Angew. Chem. Int. Ed. Engl., 19, 344 (1980); https://doi.org/10.1002/anie.198003441
J. Szejtli, Cyclodextrins and their Inclusion Complexes; Akademiai Kiado: Budapest (1982).
K. Uekama, F. Hirayama and T. Irie, Chem. Rev., 98, 2045 (1998); https://doi.org/10.1021/cr970025p
A. Gonzalez Pereira, M. Carpena, P. García Oliveira, J.C. Mejuto, M.A. Prieto and J. Simal Gandara, Int. J. Mol. Sci., 22, 1339 (2021); https://doi.org/10.3390/ijms22031339
M. Centini, M. Maggiore, M. Casolaro, M. Andreassi, R. Maffei Facino and C. Anselmi, J. Incl. Phenom. Macrocycl. Chem., 57, 109 (2007); https://doi.org/10.1007/s10847-006-9212-0
Q.-D. Hu, G.-P. Tang and P.K. Chu, Acc. Chem. Res., 47, 2017 (2014); https://doi.org/10.1021/ar500055s
G. Wenz, Angew. Chem. Int. Ed. Engl., 33, 803 (1994); https://doi.org/10.1002/anie.199408031
A. Matencio, S. Navarro-Orcajada, F. García-Carmona and J.M. López- Nicolás, Trends Food Sci. Technol., 104, 132 (2020); https://doi.org/10.1016/j.tifs.2020.08.009
L. Almagro and M.Á. Pedreño, Phytochem. Rev., 19, 1061 (2020); https://doi.org/10.1007/s11101-020-09704-6
P.P. Menezes, T.A. Andrade, L.A. Frank, E.P.B.S.S. de Souza, G.G.G. Trindade, I.A.S. Trindade, M.R. Serafini, S.S. Guterres and A.A.S. Araújo, Int. J. Pharm., 559, 312 (2019); https://doi.org/10.1016/j.ijpharm.2019.01.041
K. Uekama, T. Fujinaga, F. Hirayama, M. Otagiri, M. Yamasaki, H. Seo, T. Hashimoto and M. Tsuruoka, J. Pharm. Sci., 72, 1338 (1983); https://doi.org/10.1002/jps.2600721125
K. Uekama, T. Fujinaga, F. Hirayama, M. Otagiri, Y. Kurono and K. Ikeda, J. Pharm. Pharmacol., 34, 627 (2011); https://doi.org/10.1111/j.2042-7158.1982.tb04690.x
H.-J. Shu, C.-M. Zeng, C. Wang, D.F. Covey, C.F. Zorumski and S. Mennerick, Br. J. Pharmacol., 150, 164 (2007); https://doi.org/10.1038/sj.bjp.0706973
J. Pitha, S.M. Harman and M.E. Michel, J. Pharm. Sci., 75, 165 (1986); https://doi.org/10.1002/jps.2600750213
G.T. Taylor, J. Weiss and J. Pitha, Pharm. Res., 6, 641 (1989); https://doi.org/10.1023/A:1015922019038
C.A. Stuenkel, R.E. Dudley and S.S.C. Yen, J. Clin. Endocrinol. Metab., 72, 1054 (1991); https://doi.org/10.1210/jcem-72-5-1054
B. Salehian, C. Wang, J. Alexander, T. Davidson, V. McDonald, N. Berman, R.E. Dudley, F. Ziel and R.S. Swerdloff, J. Clin. Endocrinol. Metab., 80, 3567 (1995); https://doi.org/10.1210/jcem.80.12.8530600
H. Fridriksdo’ttir, T. Loftsson, J.A. Gudmundsson, G.J. Bjarnason, M. Kjeld and T. Thorsteinsson, Pharmazie, 51, 39 (1996).
A. Usayapant, A.H. Karara and M.M. Narurkar, Pharm. Res., 8, 1495 (1991); https://doi.org/10.1023/A:1015838215268
P. Jarho, A. Urtti, K. Ja ̈rvinen, D.W. Pate and T. Jarvinen, Life Sci., 58, 181 (1996); https://doi.org/10.1016/0024-3205(96)00024-0
P. Jarho, A. Urtti, D.W. Pate, P. Suhonen and T. Jarvinen, Int. J. Pharm., 137, 209 (1996); https://doi.org/10.1016/0378-5173(96)04522-X
K. Imamachi, E. Stefansson, A. Ohira and M. Tanito, Acta Ophthalmol., 97, 824 (2019); https://doi.org/10.1111/aos.14119
B. Tian, S. Hua and J. Liu, Carbohydr. Polym., 232, 115805 (2020); https://doi.org/10.1016/j.carbpol.2019.115805
M. Singh, R. Sharma and U.C. Banerjee, Biotechnol. Adv., 20, 341 (2002); https://doi.org/10.1016/S0734-9750(02)00020-4
J.-F. Chen, Q. Lin, Y.-M. Zhang, H. Yao and T.-B. Wei, Chem. Commun., 53, 13296 (2017); https://doi.org/10.1039/C7CC08365C
N. Kaur, G. Kaur, U.A. Fegade, A. Singh, S.K. Sahoo, A.S. Kuwar and N. Singh, TrAC-Trends Analyt. Chem., 95, 86 (2017); https://doi.org/10.1016/j.trac.2017.08.003
Q. Wang, Z. Li, D.-D. Tao, Q. Zhang, P. Zhang, D.-P. Guo and Y.-B. Jiang, Chem. Commun., 52, 12929 (2016); https://doi.org/10.1039/C6CC06075G
G. Sriram, M.P. Bhat, P. Patil, U.T. Uthappa, H.-Y. Jung, T. Altalhi, T. Kumeria, T.M. Aminabhavi, R.K. Pai, Madhuprasad and M.D. Kurkuri, TrAC-Trends Analyt. Chem., 93, 212 (2017); https://doi.org/10.1016/j.trac.2017.06.005
L. Tang and J. Li, ACS Sens., 2, 857 (2017); https://doi.org/10.1021/acssensors.7b00282
P.V.S. Ajay, J. Printo, D.S.C.G. Kiruba, L. Susithra, K. Takatoshi and M. Sivakumar, Mater. Sci. Eng. C, 78, 1231 (2017); https://doi.org/10.1016/j.msec.2017.05.018
H. Pu, W. Xiao and D.-W. Sun, Trends Food Sci. Technol., 70, 114 (2017); https://doi.org/10.1016/j.tifs.2017.10.001
W. Xi, B.K. Shrestha and A.J. Haes, Anal. Chem., 90, 128 (2018); https://doi.org/10.1021/acs.analchem.7b04225
S. Arif, S. Qudsia, S. Urooj, N. Chaudry, A. Arshad and S. Andleeb, Biosens. Bioelectron., 65, 62 (2015); https://doi.org/10.1016/j.bios.2014.09.088
K.M.M. Kabir, S.J. Ippolito, A.E. Kandjani, Y.M. Sabri and S.K. Bhargava, Trends Analyt. Chem., 88, 77 (2017); https://doi.org/10.1016/j.trac.2016.12.009
P. Skladal, Trends Analyt. Chem., 79, 127 (2016); https://doi.org/10.1016/j.trac.2015.12.009
C. Zhao, M.H. Montaseri, G.S. Wood, S.H. Pu, A.A. Seshia and M. Kraft, Sens. Actuators A Phys., 249, 93 (2016); https://doi.org/10.1016/j.sna.2016.07.015
J. Liu, M. Xu, B. Wang, Z. Zhou and L. Wang, RSC Adv., 7, 1432 (2017);https://doi.org/10.1039/C6RA24793H
T.A. Shumilova, T. Rüffer, H. Lang and E.A. Kataev, Chem. Eur. J., 24, 1500 (2018); https://doi.org/10.1002/chem.201704098
T.L. Mako, J.M. Racicot and M. Levine, Chem. Rev., 119, 322 (2019); https://doi.org/10.1021/acs.chemrev.8b00260
S. Uchiyama, E. Fukatsu, G.D. McClean and A.P. de Silva, Angew. Chem. Int. Ed., 55, 768 (2016); https://doi.org/10.1002/anie.201509096
A.P. De Silva, T.P. Vance, M.E.S. West and G.D. Wright, Org. Biomol. Chem., 6, 2468 (2008); https://doi.org/10.1039/b802963f
J.K. Tusa and H. He, J. Mater. Chem., 15, 2640 (2005); https://doi.org/10.1039/b503172a
F.M. Harold, The Vital Force-A Study of Bioenergetics, Freeman: New York, pp. 318-332 (1986).
A.P. de Silva and K.R.A.S. Sandanayake, J. Chem. Soc. Chem. Commun.,16, 1183 (1989); https://doi.org/10.1039/c39890001183
R.M. Izatt, R.E. Terry, D.P. Nelson, D.J. Eatough, J.S. Bradshaw, Y. Chan, L.D. Hansen and J.J. Christensen, J. Am. Chem. Soc., 98, 7626 (1976); https://doi.org/10.1021/ja00440a029
C.D. Tran and T.A. Van Fleet, Anal. Chem., 60, 2478 (1988); https://doi.org/10.1021/ac00173a009
A.P. de Silva and K.R.A.S. Sandanayake, Tetrahedron Lett., 32, 421 (1991); https://doi.org/10.1016/S0040-4039(00)92644-3
www.optimedical.com
B. Bag and P.K. Bharadwaj, Chem. Commun., 4, 513 (2005); https://doi.org/10.1039/b413274b
Y. Mamo, F. Bekele, T. Nigussie and A. Zewudie, BMC Endocr. Disord., 19, 91 (2019); https://doi.org/10.1186/s12902-019-0421-0
D.C. Klonoff, D. Ahn and A. Drincic, Diabetes Res. Clin. Pract., 133, 178 (2017); https://doi.org/10.1016/j.diabres.2017.08.005
A. Wood, D. O’Neal, J. Furler and E.I. Ekinci, Intern. Med. J., 48, 499 (2018); https://doi.org/10.1111/imj.13770
J.P. Lorand and J.O. Edwards, J. Org. Chem., 24, 769 (1959); https://doi.org/10.1021/jo01088a011
G. Wulff, Pure Appl. Chem., 54, 2093 (1982); https://doi.org/10.1351/pac198254112093
H. Fang, G. Kaur and B. Wang, J. Fluoresc., 14, 481 (2004); https://doi.org/10.1023/B:JOFL.0000039336.51399.3b
Z. Guo, I. Shin and J. Yoon, Chem. Commun., 48, 5956 (2012); https://doi.org/10.1039/c2cc31985c
X. Sun, B.M. Chapin, P. Metola, B. Collins, B. Wang, T.D. James and E.V. Anslyn, Nat. Chem., 11, 768 (2019); https://doi.org/10.1038/s41557-019-0314-x
B.C. Crane, N.P. Barwell, P. Gopal, M. Gopichand, T. Higgs, T.D. James, C.M. Jones, A. Mackenzie, K.P. Mulavisala and W. Paterson, J. Diabetes Sci. Technol., 9, 751 (2015); https://doi.org/10.1177/1932296815587937
M. Mortellaro and A. DeHennis, Biosens. Bioelectron., 61, 227 (2014); https://doi.org/10.1016/j.bios.2014.05.022
T. D. James (2019); https://chemistrycommunity.nature.com/posts/53695-measure-for-measure-fluorescent-boronic-acid-sensors-for-continuous-monitoring-of-glucose-based-on-ortho-aminomethylphenylboronic-acids-an-ongoing-shakespearian-drama (accessed 29/11/2020).
Y. Zhao, S. Song, X. Ren, J. Zhang, Q. Lin and Y. Zhao, Chem. Rev., 122, 5604 (2022); https://doi.org/10.1021/acs.chemrev.1c00815
K. Fu, D.W. Pack, A.M. Klibanov and R. Langer, Pharm. Res., 17, 100 (2000); https://doi.org/10.1023/A:1007582911958
J.S. Boateng, K.H. Matthews, H.N. Stevens and G.M. Eccleston, J. Pharm. Sci., 97, 2892 (2008); https://doi.org/10.1002/jps.21210
J. Boekhoven and S.I. Stupp, Adv. Mater., 26, 1642 (2014); https://doi.org/10.1002/adma.201304606
J.-M. Lehn, Polym. Int., 51, 825 (2002); https://doi.org/10.1002/pi.852
T. Aida, E.W. Meijer and S.I. Stupp, Science, 335, 813 (2012); https://doi.org/10.1126/science.1205962
R. Dong, Y. Zhou, X. Huang, X. Zhu, Y. Lu and J. Shen, Adv. Mater., 27, 498 (2015); https://doi.org/10.1002/adma.201402975
H. Cui, M.J. Webber and S.I. Stupp, Biopolymers, 94, 1 (2010); https://doi.org/10.1002/bip.21328
C.B. Herbert, T.L. McLernon, C.L. Hypolite, D.N. Adams, L. Pikus, C.-C. Huang, G.B. Fields, P.C. Letourneau, M.D. Distefano and W.-S. Hu, Chem. Biol., 4, 731 (1997); https://doi.org/10.1016/S1074-5521(97)90311-2
M. Mrksich, Acta Biomater., 5, 832 (2009); https://doi.org/10.1016/j.actbio.2009.01.016
S. Zhang, Nat. Biotechnol., 21, 1171 (2003); https://doi.org/10.1038/nbt874
K.B. McClary, T. Ugarova and D.W. Grainger, J. Biomed. Mater. Res., 50, 428 (2000); https://doi.org/10.1002/(SICI)1097-4636(20000605)50:3<428::AID-JBM18>3.0.CO;2-H
C. Roberts, C.S. Chen, M. Mrksich, V. Martichonok, D.E. Ingber and G.M. Whitesides, J. Am. Chem. Soc., 120, 6548 (1998); https://doi.org/10.1021/ja972467o
G. Cheng, V. Castelletto, R. Jones, J. Connon and I.W. Hamley, Soft Matter, 7, 1326 (2011); https://doi.org/10.1039/C0SM00408A
L. Ikonen, E. Kerkelä, G. Metselaar, M.C. Stuart, M.R. de Jong and K. Aalto-Setälä, BioMed Res. Int., 2013, 285678 (2013); https://doi.org/10.1155/2013/285678
X.Q. Dou, P. Li, D. Zhang and C.L. Feng, J. Mater. Chem. B Mater. Biol. Med., 1, 3562 (2013); https://doi.org/10.1039/c3tb20155d
D.J. Welsh, P. Posocco, S. Pricl and D.K. Smith, Org. Biomol. Chem., 11, 3177 (2013); https://doi.org/10.1039/c3ob00034f
M.R. Dreher, A.J. Simnick, K. Fischer, R.J. Smith, A. Patel, M. Schmidt and A. Chilkoti, J. Am. Chem. Soc., 130, 687 (2008); https://doi.org/10.1021/ja0764862
J.A. Zupancich, F.S. Bates and M.A. Hillmyer, Biomacromolecules, 10, 1554 (2009); https://doi.org/10.1021/bm900149b
P.Y. Dankers, M.C. Harmsen, L.A. Brouwer, M.J. van Luyn and E.W. Meijer, Nat. Mater., 4, 568 (2005); https://doi.org/10.1038/nmat1418
S. Sur, J.B. Matson, M.J. Webber, C.J. Newcomb and S.I. Stupp, ACS Nano, 6, 10776 (2012); https://doi.org/10.1021/nn304101x
H. Storrie, M.O. Guler, S.N. Abu-Amara, T. Volberg, M. Rao, B. Geiger and S.I. Stupp, Biomaterials, 28, 4608 (2007); https://doi.org/10.1016/j.biomaterials.2007.06.026
M.J. Webber, J. Tongers, M.A. Renault, J.G. Roncalli, D.W. Losordo and S.I. Stupp, Acta Biomater., 6, 3 (2010);
https://doi.org/10.1016/j.actbio.2009.07.031
H. Hosseinkhani, M. Hosseinkhani and H. Kobayashi, J. Bioact. Compatib. Polym., 21, 277 (2006); https://doi.org/10.1177/0883911506066934
H. Hosseinkhani, M. Hosseinkhani, F. Tian, H. Kobayashi and Y. Tabata, Biomaterials, 27, 4079 (2006); https://doi.org/10.1016/j.biomaterials.2006.03.030
H. Hosseinkhani, P.-D. Hong and D.-S. Yu, Chem. Rev., 113, 4837 (2013); https://doi.org/10.1021/cr300131h
Z. Huang, C.J. Newcomb, P. Bringas Jr., S.I. Stupp and M.L. Snead, Biomaterials, 31, 9202 (2010); https://doi.org/10.1016/j.biomaterials.2010.08.013
Z. Huang, C.J. Newcomb, Y. Zhou, Y.P. Lei, P. Bringas Jr., S.I. Stupp and M.L. Snead, Biomaterials, 34, 3303 (2013); https://doi.org/10.1016/j.biomaterials.2013.01.054
O.J.G.M. Goor, S.I.S. Hendrikse, P.Y.W. Dankers and E.W. Meijer, Chem. Soc. Rev., 46, 6621 (2017); https://doi.org/10.1039/C7CS00564D
Shome Asian J. Chem.
A. Aggeli, M. Bell, L.M. Carrick, C.W.G. Fishwick, R. Harding, P.J. Mawer, S.E. Radford, A.E. Strong and N. Boden, J. Am. Chem. Soc., 125, 9619 (2003); https://doi.org/10.1021/ja021047i
J. Kirkham, A. Firth, D. Vernals, N. Boden, C. Robinson, R.C. Shore, S.J. Brookes and A. Aggeli, J. Dent. Res., 86, 426 (2007); https://doi.org/10.1177/154405910708600507
R.N. Shah, N.A. Shah, M.M. Del Rosario Lim, C. Hsieh, G. Nuber and S.I. Stupp, Proc. Natl. Acad. Sci. USA, 107, 3293 (2010); https://doi.org/10.1073/pnas.0906501107
A.S. Mao and D.J. Mooney, Proc. Natl. Acad. Sci. USA, 112, 14452 (2015); https://doi.org/10.1073/pnas.1508520112
G. Sinawang, M. Osaki, Y. Takashima, H. Yamaguchi and A. Harada, Chem. Commun., 56, 4381 (2020); https://doi.org/10.1039/D0CC00672F
https://europe.nissannews.com/en-GB/releases/release-87812
F.M. Raymo and J.F. Stoddart, Chem. Rev., 99, 1643 (1999); https://doi.org/10.1021/cr970081q
J.F. Stoddart, Angew. Chem. Int. Ed., 56, 11094 (2017); https://doi.org/10.1002/anie.201703216
L. Fang, M.A. Olson, D. Benitez, E. Tkatchouk, W.A. Goddard III and J.F. Stoddart, Chem. Soc. Rev., 39, 17 (2010); https://doi.org/10.1039/B917901A
T. Takata, Polym. J., 38, 1 (2006); https://doi.org/10.1295/polymj.38.1
A.W. Heard and S.M. Goldup, ACS Cent. Sci., 6, 117 (2020); https://doi.org/10.1021/acscentsci.9b01185
J. Araki and K. Ito, Soft Matter, 3, 1456 (2007); https://doi.org/10.1039/b705688e
J.J. Li, F. Zhao and J. Li, Appl. Microbiol. Biotechnol., 90, 427 (2011); https://doi.org/10.1007/s00253-010-3037-x
I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, Science, 334, 75 (2011); https://doi.org/10.1126/science.1209150
S. Choi, T.W. Kwon, A. Coskun and J.W. Choi, Science, 357, 279 (2017); https://doi.org/10.1126/science.aal4373
A.M. Wilson, P.J. Bailey, P.A. Tasker, J.R. Turkington, R.A. Grant and J.B. Love, Chem. Soc. Rev., 43, 123 (2014); https://doi.org/10.1039/C3CS60275C
M.D. Rao, K.K. Singh, C.A. Morrison and J.B. Love, RSC Adv., 10, 4300 (2020); https://doi.org/10.1039/C9RA07607G
C. Hageluken and C.W. Corti, Gold Bull., 43, 209 (2010); https://doi.org/10.1007/BF03214988
L.X. Chen, M. Liu, Y.Q. Zhang, Q.J. Zhu, J.X. Liu, B.X. Zhu and Z. Tao, Chem. Commun., 55, 14271 (2019); https://doi.org/10.1039/C9CC07147D
cycladex, http://cycladex.com/
D.D. Walker, M.A. Norato, S.G. Campbell, M.L. Crowder, S.D. Fink, F.F. Fondeur, M.W. Geeting, G.F. Kessinger and R.A. Pierce, Sep. Sci. Technol., 40, 297 (2005); https://doi.org/10.1081/SS-200042239
P. Klemarczyk and J. Guthrie, Advances in Structural Adhesive Bonding, Woodhead Publishing in Materials, pp. 96-131 (2010).
S.J. Harris, M.A. McKervey, D.P. Melody, J. Woods and J.M. Rooney, Instant Adhesive Composition Utilizing Calixarene Accelerators, US Patent 4556700 (1985).