Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Direct Use of 3d-Transition Metal Organic Framework as Catalyst for Oxygen Evolving Reaction (OER) and Hydrogen Evolving Reaction (HER): A Review
Corresponding Author(s) : Mrinal Sarkar
Asian Journal of Chemistry,
Vol. 35 No. 2 (2023): Vol 35 Issue 2, 2023
Abstract
High-purity hydrogen can be produced using an effective process known as electrochemical water splitting to provide environmentally acceptable fuels. The advancement of affordable, earth-rich catalysts is the fundamental obstacle to electrochemical water splitting’s wide-scale industrial applications. Oxygen evolving reactions (OERs) and hydrogen evolving reactions (HERs) are two of the processes involved in electrochemical water splitting. Widespread interest has been shown in creating efficient first-row transition metal electrocatalysts that can take the role of platinum-based electrocatalysts for both oxygen and hydrogen evolving reactions. A family of crystalline porous materials made from organic ligands and metal ions are known as metal organic frameworks (MOFs). A promising family of novel materials called MOFs has been developed for high-efficiency OER and HER electrocatalysts. Direct MOF catalysts and MOF-derived catalysts are the two divisions of MOF-based catalysts. The following are examples of MOF-derived catalysts: (i) guest@ MOF composites; (ii) hybrid materials produced by pyrolyzing MOFs; and (iii) hybrid materials created from MOFs. The best direct catalysts for OER and HER are reportedly nickel/cobalt monometallic MOF and iron-nickel/iron-cobalt heterometallic MOF. According to one theory, the breakdown of organic ligands and the formation of molecules based on water-oxidizing oxides may be a result of first-row transition MOFs being exposed to the hostile HER and OER conditions. The most recent advancements in first-row transition MOFs as direct catalysts of OER and HER are outlined in this article.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili and H.N. Alshareef, Adv. Mater., 28, 77 (2016); https://doi.org/10.1002/adma.201503906
- J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park and M. Grätzel, Science, 345, 1593 (2014); https://doi.org/10.1126/science.1258307
- L. Yan, L. Cao, P. Dai, X. Gu, D. Liu, L. Li and X. Zhao, Adv. Funct. Mater., 27, 1703455 (2017); https://doi.org/10.1002/adfm.201703455
- R. Dong, Z. Zheng, D.C. Tranca, J. Zhang, N. Chandrasekhar, S. Liu and X. Feng, Chem. Eur. J., 23, 2255 (2017); https://doi.org/10.1002/chem.201605337
- Y. Li, S. Niu, D. Rakov, Y. Wang, M. Cabán-Acevedo, S. Zheng and P. Xu, Nanoscale, 10, 7291 (2018); https://doi.org/10.1039/C8NR01811A
- X. Zou and Y. Zhang, Chem. Soc. Rev., 44, 5148 (2015); https://doi.org/10.1039/C4CS00448E
- X. Wen and J. Guan, Appl. Mater. Today, 16, 146 (2019); https://doi.org/10.1016/j.apmt.2019.05.013
- Y. Jiao, Y. Zheng, M. Jaroniec and S.Z. Qiao, Chem. Soc. Rev., 44, 2060 (2015); https://doi.org/10.1039/C4CS00470A
- Y. Yan, T. He, B. Zhao, K. Qi, H. Liu and B.Y. Xia, J. Mater. Chem. A, 6, 15905 (2018); https://doi.org/10.1039/C8TA05985C
- K. Yan, T. Lafleur, J. Chai and C. Jarvis, Electrochem. Commun., 62, 24 (2016); https://doi.org/10.1016/j.elecom.2015.11.004
- M.F. Weber and M.J. Dignam, J. Electrochem. Soc., 131, 1258 (1984); https://iopscience.iop.org/article/10.1149/1.2115797/meta
- C.C. McCrory, S. Jung, J.C. Peters and T.F. Jaramillo, J. Am. Chem. Soc., 135, 16977 (2013); https://doi.org/10.1021/ja407115p
- X. Zhang, Q. Liu, X. Shi, A.M. Asiri and X. Sun, Inorg. Chem. Front., 5, 1405 (2018); https://doi.org/10.1039/C8QI00163D
- X. Zhu, X. Shi, A.M. Asiri, Y. Luo and X. Sun, Inorg. Chem. Front., 5, 1188 (2018); https://doi.org/10.1039/C8QI00119G
- A. Corma, H.I. Garcia and F.X. Llabrés i Xamena, Chem. Rev., 110, 4606 (2010); https://doi.org/10.1021/cr9003924
- J. Gascon, A. Corma, F. Kapteijn and F. X. Llabres i Xamena, ACS Catal., 4, 361 (2014); https://doi.org/10.1021/cs400959k
- S. Wang and X. Wang, Small, 11, 3097 (2015); https://doi.org/10.1002/smll.201500084
- S. Wang and X. Wang, Angew. Chem. Int. Ed., 55, 2308 (2016); https://doi.org/10.1002/anie.201507145
- J. Ryu, N. Jung, J.H. Jang, H.J. Kim and S.J. Yoo, ACS Catal., 5, 4066 (2015); https://doi.org/10.1021/acscatal.5b00349
- J. Song, C. Wei, Z.F. Huang, C. Liu, L. Zeng, X. Wang and Z.J. Xu, Chem. Soc. Rev., 49, 2196 (2020); https://doi.org/10.1039/C9CS00607A
- J.Q. Shen, P.Q. Liao, D.D. Zhou, C.T. He, J.X. Wu, W.X. Zhang and X.M. Chen, J. Am. Chem. Soc., 139, 1778 (2017); https://doi.org/10.1021/jacs.6b12353
- X.L. Wang, L.Z. Dong, M. Qiao, Y.J. Tang, J. Liu, Y. Li and Y.Q. Lan, Angew. Chem. Int. Ed., 57, 9660 (2018); https://doi.org/10.1002/anie.201803587
- X.F. Lu, P.Q. Liao, J.W. Wang, J.X. Wu, X.W. Chen, C.T. He and X.M. Chen, J. Am. Chem. Soc., 138, 8336 (2016); https://doi.org/10.1021/jacs.6b03125
- Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li, C.Y. Su, N. Ogiwara, H. Kobayashi, H. Kitagawa, M. Liu and G. Li, Nat Commun, 10, 5048 (2019); https://doi.org/10.1038/s41467-019-13051-2
- W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang and Q. Liu, Nat Energy, 4, 115 (2019); https://doi.org/10.1038/s41560-018-0308-8
- S. Mukhopadhyay, O. Basu, R. Nasani and S.K. Das, Chem. Commun., 56, 11735 (2020); https://doi.org/10.1039/D0CC03659E
- R. Madhu, A. Karmakar, S. Kumaravel, S.S. Sankar, K. Bera, S. Nagappan, H.N. Dhandapani and S. Kundu, ACS Appl. Mater. Interfaces, 14, 1077 (2022); https://doi.org/10.1021/acsami.1c20752
- S. Anantharaj and V. Aravindan, Adv. Energy Mater., 10, 1902666 (2019); https://doi.org/10.1002/aenm.201902666
- K. Fan, H. Zou, Y. Lu, H. Chen, F. Li, J. Liu, L. Sun, L. Tong, M.F. Toney, M. Sui and J. Yu, ACS Nano, 12, 12369 (2018); https://doi.org/10.1021/acsnano.8b06312
- N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao and S. Liu, J. Mater. Chem. A, 6, 19912 (2018); https://doi.org/10.1039/C8TA06529B
- Y. Wang, C. Xie, D. Liu, X. Huang, J. Huo and S. Wang, ACS Appl. Mater. Interfaces, 8, 18652 (2016); https://doi.org/10.1021/acsami.6b05811
- A. Tamilselvan, S. Balakumar, M. Sakar, C. Nayek, P. Murugavel and K. Saravana Kumar, Dalton Trans., 43, 5731 (2014); https://doi.org/10.1039/C3DT52260A
- J.Y. Zhang, Y. Yan, B. Mei, R. Qi, T. He, Z. Wang, W. Fang, S. Zaman, Y. Su, S. Ding and B.Y. Xia, Energy Environ. Sci., 14, 365 (2021); https://doi.org/10.1039/D0EE03500A
- A.M. Harzandi, S. Shadman, A.S. Nissimagoudar, D.Y. Kim, H.D. Lim, J.H. Lee, M.G. Kim, H.Y. Jeong, Y. Kim and K.S. Kim, Adv. Energy Mater., 11, 2003448 (2021); https://doi.org/10.1002/aenm.202003448
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough and Y. Shao-Horn, Science, 334, 1383 (2011); https://doi.org/10.1126/science.1212858
- Y. Yan, B. Xia, Z. Xu and X. Wang, ACS Catal., 4, 1693 (2014); https://doi.org/10.1021/cs500070x
- F. Safizadeh, E. Ghali and G. Houlachi, Int. J. Hydr. Energy, 40, 256 (2015); https://doi.org/10.1016/j.ijhydene.2014.10.109
- J. Jiang, L. Huang, X. Liu and L. Ai, ACS Appl. Mater. Interf., 9, 7193 (2017); https://doi.org/10.1021/acsami.6b16534
- L. Zhong, J. Ding, X. Wang, L. Chai, T.T. Li, K. Su and S. Huang, Inorg. Chem., 59, 2701 (2020); https://doi.org/10.1021/acs.inorgchem.9b03009
- N. Liu, Q. Zhang and J. Guan, Chem. Commun., 57, 5016 (2021); https://doi.org/10.1039/D1CC01492G
- S.K. Konavarapu, D. Ghosh, A. Dey, D. Pradhan and K. Biradha, Chem. Eur. J., 25, 11141 (2019); https://doi.org/10.1002/chem.201902274
- Q. Zha, F. Yuan, G. Qin and Y. Ni, Inorg. Chem., 59, 1295 (2020); https://doi.org/10.1021/acs.inorgchem.9b03011
- Y. Gong, H.F. Shi, Z. Hao, J.L. Sun and J.H. Lin, Dalton Trans., 42, 12252 (2013); https://doi.org/10.1039/C3DT50697E
- D. Han, K. Huang, X. Li, M. Peng, L. Jing, B. Yu and D. Qin, RSC Adv., 9, 33890 (2019); https://doi.org/10.1039/C9RA07031A
- Y. Zhao, Z.M. Zhai, X.Y. Liu, X.G. Yang, L.F. Ma and L.Y. Wang, J. Solid State Chem., 278, 120913 (2019); https://doi.org/10.1016/j.jssc.2019.120913
- Y. Wei, X. Ren, H. Ma, X. Sun, Y. Zhang, X. Kuang and Q. Wei, Chem. Eur. J., 24, 2075 (2018); https://doi.org/10.1002/chem.201705606
- Q. Meng, J. Yang, S. Ma, M. Zhai and J. Lu, Polymers, 9, 676 (2017); https://doi.org/10.3390/polym9120676
- Z. Wang, J. Chen, R. Bi, W. Dou, K. Wang, F. Mao and S. Wang, J. Solid State Chem., 283, 121128 (2020); https://doi.org/10.1016/j.jssc.2019.121128
- R.K. Tripathy, A.K. Samantara and J.N. Behera, Dalton Trans., 48, 10557 (2019); https://doi.org/10.1039/C9DT01730E
- V. Maruthapandian, S. Kumaraguru, S. Mohan, V. Saraswathy and S. Muralidharan, ChemElectroChem, 5, 2795 (2018); https://doi.org/10.1002/celc.201800802
- Y. Gong, Z. Hao, J. Meng, H. Shi, P. Jiang, M. Zhang and J. Lin, ChemPlusChem, 79, 266 (2014); https://doi.org/10.1002/cplu.201300334
- R. Shekurov, V.V. Khrizanforova, L. Gilmanova, M.N. Khrizanforov, V. Miluykov, O. Kataeva, Z. Yamaleeva, T. Burganov, T. Gerasimova, A. Khamatgalimov, S. Katsyuba, V. Kovalenko, Y. Krupskaya, V. Kataev, B. Büchner, V. Bon, I. Senkovs, S. Kaskelf, A. Gubaidullina, O.G. Sinyashin, Y.H. Budnikova, Dalton Trans., 48, 3601 (2019); https://doi.org/10.1039/C8DT04618B
- P. Muthukumar, D. Moon and S.P. Anthony, CrystEngComm, 21, 6552 (2019); https://doi.org/10.1039/C9CE01178A
- D.H. He, J.J. Liu, Y. Wang, F. Li, B. Li and J.B. He, Electrochim. Acta, 308, 285 (2019); https://doi.org/10.1016/j.electacta.2019.04.038
- B. Zhou, J.J. Zheng, J. Duan, C. Hou, Y. Wang, W. Jin and Q. Xu, ACS Appl. Mater. Interf., 11, 21086 (2019); https://doi.org/10.1021/acsami.9b04471
- Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li, C.Y. Su, N. Ogiwara, H. Kobayashi, H. Kitagawa, M. Liu and G. Li, Nat Commun, 10, 5048 (2019); https://doi.org/10.1038/s41467-019-13051-2
- A. Goswami, D. Ghosh, V.V. Chernyshev, A. Dey, D. Pradhan and K. Biradha, ACS Appl. Mater. Interf., 12, 33679 (2020); https://doi.org/10.1021/acsami.0c07268
- X. Wang, B. Li, Y.P. Wu, A. Tsamis, H.G. Yu, S. Liu, J. Zhao, Y.S. Li and D.S. Li, Inorg. Chem., 59, 4764 (2020); https://doi.org/10.1021/acs.inorgchem.0c00024
- X. Zhao, B. Pattengale, D. Fan, Z. Zou, Y. Zhao, J. Du and C. Xu, ACS Energy Lett., 3, 2520 (2018); https://doi.org/10.1021/acsenergylett.8b01540
- K. Yue, J. Liu, C. Xia, K. Zhan, P. Wang, X. Wang and B.Y. Xia, Mater. Chem. Front., 5, 7191 (2021); https://doi.org/10.1039/D1QM00960E
- Q. Mou, Z. Xu, G. Wang, E. Li, J. Liu, P. Zhao and G. Cheng, Inorg. Chem. Front., 8, 2889 (2021); https://doi.org/10.1039/D1QI00267H
- Y. Li, W. Ma, H. Yang, Q. Tian, Q. Xu and B. Han, Chem. Commun., 58, 6833 (2022); https://doi.org/10.1039/D2CC01163H
- Y. Liu, X. Li, Q. Sun, Z. Wang, W.H. Huang, X. Guo and Z. Zhu, Small, 18 2201076 (2022); https://doi.org/10.1002/smLl.202201076
- J.N. Lu, J. Liu, L.Z. Dong, S.L. Li, Y.H. Kan and Y.Q. Lan, Chem. Eur. J., 25, 15830 (2019); https://doi.org/10.1002/chem.201903482
- Z. Xue, Y. Li, Y. Zhang, W. Geng, B. Jia, J. Tang, S. Bao, H.-P. Wang, Y. Fan, Z. Wei, Z. Zhang, Z. Ke, G. Li and C.Y. Su, Adv. Energy Mater., 8, 1801564 (2018); https://doi.org/10.1002/aenm.201801564
- K. Ge, S. Sun, Y. Zhao, K. Yang, S. Wang, Z. Zhang, J. Cao, Y. Yang, Y. Zhang, M. Pan and L. Zhu, Angew. Chem. Int. Ed., 60, 12097 (2021); https://doi.org/10.1002/anie.202102632
- L. Wang, Y. Wu, R. Cao, L. Ren, M. Chen, X. Feng and B. Wang, ACS Appl. Mater. Interf., 8, 16736 (2016); https://doi.org/10.1021/acsami.6b05375
- M. Gu, S.C. Wang, C. Chen, D. Xiong and F.Y. Yi, Inorg. Chem., 59 6078 (2020); https://doi.org/10.1021/acs.inorgchem.0c00100
- J. Duan, S. Chen and C. Zhao, Nat. Commun., 8, 15341 (2017); https://doi.org/10.1038/ncomms15341
- J. Li, W. Huang, M. Wang, S. Xi, J. Meng, K. Zhao, J. Jin, W. Xu, Z. Wang, X. Liu, Q. Chen, L. Xu, X. Liao, Y. Jiang, K.A. Owusu, B. Jiang, C. Chen, D. Fan, L. Zhou and L. Mai, ACS Energy Lett., 4, 285 (2019); https://doi.org/10.1021/acsenergylett.8b02345
- F.L. Li, Q. Shao, X. Huang and J.P. Lang, Angew. Chem. Int. Ed., 130, 1906 (2018); https://doi.org/10.1002/ange.201711376
References
C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili and H.N. Alshareef, Adv. Mater., 28, 77 (2016); https://doi.org/10.1002/adma.201503906
J. Luo, J.H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.G. Park and M. Grätzel, Science, 345, 1593 (2014); https://doi.org/10.1126/science.1258307
L. Yan, L. Cao, P. Dai, X. Gu, D. Liu, L. Li and X. Zhao, Adv. Funct. Mater., 27, 1703455 (2017); https://doi.org/10.1002/adfm.201703455
R. Dong, Z. Zheng, D.C. Tranca, J. Zhang, N. Chandrasekhar, S. Liu and X. Feng, Chem. Eur. J., 23, 2255 (2017); https://doi.org/10.1002/chem.201605337
Y. Li, S. Niu, D. Rakov, Y. Wang, M. Cabán-Acevedo, S. Zheng and P. Xu, Nanoscale, 10, 7291 (2018); https://doi.org/10.1039/C8NR01811A
X. Zou and Y. Zhang, Chem. Soc. Rev., 44, 5148 (2015); https://doi.org/10.1039/C4CS00448E
X. Wen and J. Guan, Appl. Mater. Today, 16, 146 (2019); https://doi.org/10.1016/j.apmt.2019.05.013
Y. Jiao, Y. Zheng, M. Jaroniec and S.Z. Qiao, Chem. Soc. Rev., 44, 2060 (2015); https://doi.org/10.1039/C4CS00470A
Y. Yan, T. He, B. Zhao, K. Qi, H. Liu and B.Y. Xia, J. Mater. Chem. A, 6, 15905 (2018); https://doi.org/10.1039/C8TA05985C
K. Yan, T. Lafleur, J. Chai and C. Jarvis, Electrochem. Commun., 62, 24 (2016); https://doi.org/10.1016/j.elecom.2015.11.004
M.F. Weber and M.J. Dignam, J. Electrochem. Soc., 131, 1258 (1984); https://iopscience.iop.org/article/10.1149/1.2115797/meta
C.C. McCrory, S. Jung, J.C. Peters and T.F. Jaramillo, J. Am. Chem. Soc., 135, 16977 (2013); https://doi.org/10.1021/ja407115p
X. Zhang, Q. Liu, X. Shi, A.M. Asiri and X. Sun, Inorg. Chem. Front., 5, 1405 (2018); https://doi.org/10.1039/C8QI00163D
X. Zhu, X. Shi, A.M. Asiri, Y. Luo and X. Sun, Inorg. Chem. Front., 5, 1188 (2018); https://doi.org/10.1039/C8QI00119G
A. Corma, H.I. Garcia and F.X. Llabrés i Xamena, Chem. Rev., 110, 4606 (2010); https://doi.org/10.1021/cr9003924
J. Gascon, A. Corma, F. Kapteijn and F. X. Llabres i Xamena, ACS Catal., 4, 361 (2014); https://doi.org/10.1021/cs400959k
S. Wang and X. Wang, Small, 11, 3097 (2015); https://doi.org/10.1002/smll.201500084
S. Wang and X. Wang, Angew. Chem. Int. Ed., 55, 2308 (2016); https://doi.org/10.1002/anie.201507145
J. Ryu, N. Jung, J.H. Jang, H.J. Kim and S.J. Yoo, ACS Catal., 5, 4066 (2015); https://doi.org/10.1021/acscatal.5b00349
J. Song, C. Wei, Z.F. Huang, C. Liu, L. Zeng, X. Wang and Z.J. Xu, Chem. Soc. Rev., 49, 2196 (2020); https://doi.org/10.1039/C9CS00607A
J.Q. Shen, P.Q. Liao, D.D. Zhou, C.T. He, J.X. Wu, W.X. Zhang and X.M. Chen, J. Am. Chem. Soc., 139, 1778 (2017); https://doi.org/10.1021/jacs.6b12353
X.L. Wang, L.Z. Dong, M. Qiao, Y.J. Tang, J. Liu, Y. Li and Y.Q. Lan, Angew. Chem. Int. Ed., 57, 9660 (2018); https://doi.org/10.1002/anie.201803587
X.F. Lu, P.Q. Liao, J.W. Wang, J.X. Wu, X.W. Chen, C.T. He and X.M. Chen, J. Am. Chem. Soc., 138, 8336 (2016); https://doi.org/10.1021/jacs.6b03125
Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li, C.Y. Su, N. Ogiwara, H. Kobayashi, H. Kitagawa, M. Liu and G. Li, Nat Commun, 10, 5048 (2019); https://doi.org/10.1038/s41467-019-13051-2
W. Cheng, X. Zhao, H. Su, F. Tang, W. Che, H. Zhang and Q. Liu, Nat Energy, 4, 115 (2019); https://doi.org/10.1038/s41560-018-0308-8
S. Mukhopadhyay, O. Basu, R. Nasani and S.K. Das, Chem. Commun., 56, 11735 (2020); https://doi.org/10.1039/D0CC03659E
R. Madhu, A. Karmakar, S. Kumaravel, S.S. Sankar, K. Bera, S. Nagappan, H.N. Dhandapani and S. Kundu, ACS Appl. Mater. Interfaces, 14, 1077 (2022); https://doi.org/10.1021/acsami.1c20752
S. Anantharaj and V. Aravindan, Adv. Energy Mater., 10, 1902666 (2019); https://doi.org/10.1002/aenm.201902666
K. Fan, H. Zou, Y. Lu, H. Chen, F. Li, J. Liu, L. Sun, L. Tong, M.F. Toney, M. Sui and J. Yu, ACS Nano, 12, 12369 (2018); https://doi.org/10.1021/acsnano.8b06312
N. Han, P. Liu, J. Jiang, L. Ai, Z. Shao and S. Liu, J. Mater. Chem. A, 6, 19912 (2018); https://doi.org/10.1039/C8TA06529B
Y. Wang, C. Xie, D. Liu, X. Huang, J. Huo and S. Wang, ACS Appl. Mater. Interfaces, 8, 18652 (2016); https://doi.org/10.1021/acsami.6b05811
A. Tamilselvan, S. Balakumar, M. Sakar, C. Nayek, P. Murugavel and K. Saravana Kumar, Dalton Trans., 43, 5731 (2014); https://doi.org/10.1039/C3DT52260A
J.Y. Zhang, Y. Yan, B. Mei, R. Qi, T. He, Z. Wang, W. Fang, S. Zaman, Y. Su, S. Ding and B.Y. Xia, Energy Environ. Sci., 14, 365 (2021); https://doi.org/10.1039/D0EE03500A
A.M. Harzandi, S. Shadman, A.S. Nissimagoudar, D.Y. Kim, H.D. Lim, J.H. Lee, M.G. Kim, H.Y. Jeong, Y. Kim and K.S. Kim, Adv. Energy Mater., 11, 2003448 (2021); https://doi.org/10.1002/aenm.202003448
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough and Y. Shao-Horn, Science, 334, 1383 (2011); https://doi.org/10.1126/science.1212858
Y. Yan, B. Xia, Z. Xu and X. Wang, ACS Catal., 4, 1693 (2014); https://doi.org/10.1021/cs500070x
F. Safizadeh, E. Ghali and G. Houlachi, Int. J. Hydr. Energy, 40, 256 (2015); https://doi.org/10.1016/j.ijhydene.2014.10.109
J. Jiang, L. Huang, X. Liu and L. Ai, ACS Appl. Mater. Interf., 9, 7193 (2017); https://doi.org/10.1021/acsami.6b16534
L. Zhong, J. Ding, X. Wang, L. Chai, T.T. Li, K. Su and S. Huang, Inorg. Chem., 59, 2701 (2020); https://doi.org/10.1021/acs.inorgchem.9b03009
N. Liu, Q. Zhang and J. Guan, Chem. Commun., 57, 5016 (2021); https://doi.org/10.1039/D1CC01492G
S.K. Konavarapu, D. Ghosh, A. Dey, D. Pradhan and K. Biradha, Chem. Eur. J., 25, 11141 (2019); https://doi.org/10.1002/chem.201902274
Q. Zha, F. Yuan, G. Qin and Y. Ni, Inorg. Chem., 59, 1295 (2020); https://doi.org/10.1021/acs.inorgchem.9b03011
Y. Gong, H.F. Shi, Z. Hao, J.L. Sun and J.H. Lin, Dalton Trans., 42, 12252 (2013); https://doi.org/10.1039/C3DT50697E
D. Han, K. Huang, X. Li, M. Peng, L. Jing, B. Yu and D. Qin, RSC Adv., 9, 33890 (2019); https://doi.org/10.1039/C9RA07031A
Y. Zhao, Z.M. Zhai, X.Y. Liu, X.G. Yang, L.F. Ma and L.Y. Wang, J. Solid State Chem., 278, 120913 (2019); https://doi.org/10.1016/j.jssc.2019.120913
Y. Wei, X. Ren, H. Ma, X. Sun, Y. Zhang, X. Kuang and Q. Wei, Chem. Eur. J., 24, 2075 (2018); https://doi.org/10.1002/chem.201705606
Q. Meng, J. Yang, S. Ma, M. Zhai and J. Lu, Polymers, 9, 676 (2017); https://doi.org/10.3390/polym9120676
Z. Wang, J. Chen, R. Bi, W. Dou, K. Wang, F. Mao and S. Wang, J. Solid State Chem., 283, 121128 (2020); https://doi.org/10.1016/j.jssc.2019.121128
R.K. Tripathy, A.K. Samantara and J.N. Behera, Dalton Trans., 48, 10557 (2019); https://doi.org/10.1039/C9DT01730E
V. Maruthapandian, S. Kumaraguru, S. Mohan, V. Saraswathy and S. Muralidharan, ChemElectroChem, 5, 2795 (2018); https://doi.org/10.1002/celc.201800802
Y. Gong, Z. Hao, J. Meng, H. Shi, P. Jiang, M. Zhang and J. Lin, ChemPlusChem, 79, 266 (2014); https://doi.org/10.1002/cplu.201300334
R. Shekurov, V.V. Khrizanforova, L. Gilmanova, M.N. Khrizanforov, V. Miluykov, O. Kataeva, Z. Yamaleeva, T. Burganov, T. Gerasimova, A. Khamatgalimov, S. Katsyuba, V. Kovalenko, Y. Krupskaya, V. Kataev, B. Büchner, V. Bon, I. Senkovs, S. Kaskelf, A. Gubaidullina, O.G. Sinyashin, Y.H. Budnikova, Dalton Trans., 48, 3601 (2019); https://doi.org/10.1039/C8DT04618B
P. Muthukumar, D. Moon and S.P. Anthony, CrystEngComm, 21, 6552 (2019); https://doi.org/10.1039/C9CE01178A
D.H. He, J.J. Liu, Y. Wang, F. Li, B. Li and J.B. He, Electrochim. Acta, 308, 285 (2019); https://doi.org/10.1016/j.electacta.2019.04.038
B. Zhou, J.J. Zheng, J. Duan, C. Hou, Y. Wang, W. Jin and Q. Xu, ACS Appl. Mater. Interf., 11, 21086 (2019); https://doi.org/10.1021/acsami.9b04471
Z. Xue, K. Liu, Q. Liu, Y. Li, M. Li, C.Y. Su, N. Ogiwara, H. Kobayashi, H. Kitagawa, M. Liu and G. Li, Nat Commun, 10, 5048 (2019); https://doi.org/10.1038/s41467-019-13051-2
A. Goswami, D. Ghosh, V.V. Chernyshev, A. Dey, D. Pradhan and K. Biradha, ACS Appl. Mater. Interf., 12, 33679 (2020); https://doi.org/10.1021/acsami.0c07268
X. Wang, B. Li, Y.P. Wu, A. Tsamis, H.G. Yu, S. Liu, J. Zhao, Y.S. Li and D.S. Li, Inorg. Chem., 59, 4764 (2020); https://doi.org/10.1021/acs.inorgchem.0c00024
X. Zhao, B. Pattengale, D. Fan, Z. Zou, Y. Zhao, J. Du and C. Xu, ACS Energy Lett., 3, 2520 (2018); https://doi.org/10.1021/acsenergylett.8b01540
K. Yue, J. Liu, C. Xia, K. Zhan, P. Wang, X. Wang and B.Y. Xia, Mater. Chem. Front., 5, 7191 (2021); https://doi.org/10.1039/D1QM00960E
Q. Mou, Z. Xu, G. Wang, E. Li, J. Liu, P. Zhao and G. Cheng, Inorg. Chem. Front., 8, 2889 (2021); https://doi.org/10.1039/D1QI00267H
Y. Li, W. Ma, H. Yang, Q. Tian, Q. Xu and B. Han, Chem. Commun., 58, 6833 (2022); https://doi.org/10.1039/D2CC01163H
Y. Liu, X. Li, Q. Sun, Z. Wang, W.H. Huang, X. Guo and Z. Zhu, Small, 18 2201076 (2022); https://doi.org/10.1002/smLl.202201076
J.N. Lu, J. Liu, L.Z. Dong, S.L. Li, Y.H. Kan and Y.Q. Lan, Chem. Eur. J., 25, 15830 (2019); https://doi.org/10.1002/chem.201903482
Z. Xue, Y. Li, Y. Zhang, W. Geng, B. Jia, J. Tang, S. Bao, H.-P. Wang, Y. Fan, Z. Wei, Z. Zhang, Z. Ke, G. Li and C.Y. Su, Adv. Energy Mater., 8, 1801564 (2018); https://doi.org/10.1002/aenm.201801564
K. Ge, S. Sun, Y. Zhao, K. Yang, S. Wang, Z. Zhang, J. Cao, Y. Yang, Y. Zhang, M. Pan and L. Zhu, Angew. Chem. Int. Ed., 60, 12097 (2021); https://doi.org/10.1002/anie.202102632
L. Wang, Y. Wu, R. Cao, L. Ren, M. Chen, X. Feng and B. Wang, ACS Appl. Mater. Interf., 8, 16736 (2016); https://doi.org/10.1021/acsami.6b05375
M. Gu, S.C. Wang, C. Chen, D. Xiong and F.Y. Yi, Inorg. Chem., 59 6078 (2020); https://doi.org/10.1021/acs.inorgchem.0c00100
J. Duan, S. Chen and C. Zhao, Nat. Commun., 8, 15341 (2017); https://doi.org/10.1038/ncomms15341
J. Li, W. Huang, M. Wang, S. Xi, J. Meng, K. Zhao, J. Jin, W. Xu, Z. Wang, X. Liu, Q. Chen, L. Xu, X. Liao, Y. Jiang, K.A. Owusu, B. Jiang, C. Chen, D. Fan, L. Zhou and L. Mai, ACS Energy Lett., 4, 285 (2019); https://doi.org/10.1021/acsenergylett.8b02345
F.L. Li, Q. Shao, X. Huang and J.P. Lang, Angew. Chem. Int. Ed., 130, 1906 (2018); https://doi.org/10.1002/ange.201711376