Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Ca-doped CeO2 Nanoparticles for the Enhanced Adsorption Activity of Chitosan and Other Applications
Corresponding Author(s) : M.P. Geetha
Asian Journal of Chemistry,
Vol. 35 No. 2 (2023): Vol 35 Issue 2, 2023
Abstract
Calcium doped cerium oxide (CeO2) nanoparticles (NPs) were synthesized by co-precipitation method with ammonium ceric sulfate as the precursor and ethanol as solvent. They were characterized through X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) analyses. Pure CeO2 NPs have a crystallite size of 9 nm, while, calcium-doped ones have 2 nm and are having regular spherical shapes. Brunauer-Emmett-Teller (BET) surface analysis indicated that calcium-doped CeO2 NPs have larger specific surface area (59.806 m2/g) than pure CeO2 NPs (30-40 m2/g). As a result, chitosan incorporated with calcium doped CeO2 NPs showed better adsorption efficiencies (48-70%) than when incorporated with undoped CeO2 NPs (35-51%). Studies suggested that calcium doped CeO2 NPs are better potential photocatalyst for methyl orange degradation, with efficiencies between 25-68 % (in the time interval of 15-75 min) than their pure counterpart (2-15%).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Renu, V.V. Rani, S.V. Nair, K.R.V. Subramanian and V.K. Lakshmanan, Adv. Sci. Lett., 6, 17 (2012); https://doi.org/10.1166/asl.2012.3312
- P. Janoš, J. Ederer, V. Pilarová, J. Henych, J. Tolasz, D. Milde and T. Opletal, Wear, 362-363, 114 (2016); https://doi.org/10.1016/j.wear.2016.05.020
- T.T. Phan, T. Tosa and Y. Majima, Sens. Actuators B Chem., 343, 130098 (2021); https://doi.org/10.1016/j.snb.2021.130098
- N. N. Dao, M. D. Luu, Q. K. Nguyen and B. S. Kim, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 045013 (2011); https://doi.org/10.1088/2043-6262/2/4/045013
- A.R. Contreras, E. Casals, V. Puntes, D. Comilis, A. Sanchez and X. Font, Glob. NEST J., 17, 536 (2015); https://doi.org/10.30955/gnj.001687
- I.A. Siddiquey, T. Furusawa, Y.I. Hoshi, E. Ukaji, F. Kurayama, M. Sato and N. Suzuki, Appl. Surf. Sci., 255, 2419 (2008); https://doi.org/10.1016/j.apsusc.2008.07.112
- B.G. Pound, Solid State Ion., 52, 183 (1992); https://doi.org/10.1016/0167-2738(92)90104-W
- S. Tsunekawa, T. Fukuda and A. Kasuya, J. Appl. Phys., 87, 1318 (2000); https://doi.org/10.1063/1.372016
- A. Akbari-Fakhrabadi, R. Saravanan, M. Jamshidijam, R.V. Mangalaraja and M.A. Gracia, J. Saudi Chem. Soc., 19, 505 (2015); https://doi.org/10.1016/j.jscs.2015.06.003
- J. Saranya, K.S. Ranjith, P. Saravanan, D. Mangalaraj and R.T. Rajendra Kumar, Mater. Res. Semiconduct. Process., 26, 218 (2014); https://doi.org/10.1016/j.mssp.2014.03.054
- J. Huang, F. Chen, H. Wang and H. Yan, Res. Chem. Intermed., 44, 2729 (2018); https://doi.org/10.1007/s11164-018-3257-8
- A. Syed, L.S.R. Yadav, A.H. Bahkali, A.M. Elgorban, D. Abdul Hakeem and N. Ganganagappa, Crystals, 10, 817 (2020); https://doi.org/10.3390/cryst10090817
- A. Zenerino, T. Boutard, C. Bignon, S. Amigoni, D. Josse, T. Devers and F. Guittard, Toxicol. Rep., 2, 1007 (2015); https://doi.org/10.1016/j.toxrep.2015.07.003
- K.K. Babitha, A. Sreedevi, K.P. Priyanka, B. Sabu and T. Varghese, Indian J. Pure Appl. Phys., 53, 596 (2015).
- N.-A.M. Deraz, Adsorpt. Sci. Technol., 21, 229 (2003); https://doi.org/10.1260/026361703322404386
- R. Murugan, G. Ravi, R. Yuvakkumar, S. Rajendran, N. Maheswari, G. Muralidharan and Y. Hayakawa, Ceramics Int., 43, 10494 (2017); https://doi.org/10.1016/j.ceramint.2017.05.096
- M. Radovic, Z.D. Dohcevic-Mitrovic, A. Golubovic, B. Matovic, M. Šcepanovic and Z.V. Popovic, Acta Phys. Polon. A, 116, 614 (2009).
- P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar and M. Sastry, Nano Lett., 1, 515 (2001); https://doi.org/10.1021/nl0155274
- E.K. Goharshadi, S. Samiee and P. Nancarrow, J. Colloid Interface Sci., 356, 473 (2011); https://doi.org/10.1016/j.jcis.2011.01.063
- S.S. Behera, J.K. Patra, K. Pramanik, N. Panda and H. Thatoi, World J. Nano Sci. Eng., 2, 196 (2012); https://doi.org/10.4236/wjnse.2012.24026
- G. Killivalavan, A.C. Prabakar, K.C. Babu Naidu, B. Sathyaseelan, G. Rameshkumar, D. Sivakumar, K. Senthilnathan, E. Manikandan, I. Baskaran and B. Ramakrishna Rao, Biointerf. Res. Appl. Chem., 10, 5306 (2020); https://doi.org/10.33263/BRIAC102.306311
- D.M. Prabaharan, K. Sadaiyandi, M. Mahendran and S. Sagadevan, Mater. Res., 19, 478 (2016); https://doi.org/10.1590/1980-5373-MR-2015-0698
- C.R. Martin, Nanomedicine, 1, 5 (2006); https://doi.org/10.2217/17435889.1.1.5
- V.D. Kosynkin, A.A. Arzgatkina, E.N. Ivanov, M.G. Chtoutsa, A.I. Grabko, A.V. Kardapolov and N.A. Sysina, J. Alloys Compd., 303- 304, 421 (2000); https://doi.org/10.1016/S0925-8388(00)00651-4
- C. Hu, Z. Zhang, H. Liu, P. Gao and Z.L. Wang, Nanotechnology, 17, 5983 (2006); https://doi.org/10.1088/0957-4484/17/24/013
- L. Truffault, M.-T. Ta, T. Devers, K. Konstantinov, C. Simmonard, V. Harel, C. Andreazza, I.P. Nevirkovets, A. Pineau, O. Veron and J.-P. Blondeau, Mater. Res. Bull., 45, 527 (2010); https://doi.org/10.1016/j.materresbull.2010.02.008
- T.N. Ravishankar, T. Ramakrishnappa, G. Nagaraju and H. Rajanaika, ChemistryOpen, 4, 146 (2015); https://doi.org/10.1002/open.201402046
- J. Saranya, K.S. Ranjith, P. Saravanan, D. Mangalaraj and R.T. Rajendra Kumar, Mater. Sci. Semicond. Process., 26, 218 (2014); https://doi.org/10.1016/j.mssp.2014.03.054
- M. Kumari, M. Kumar, A. Kumar, S. Kumara and D. Kumar, Synthesis of Lithium Doped Cerium Oxide anoparticle by the Co-precipitation Method, In: Recent Trends in Materials and Devices, Conference Proceedings, pp. 131-137 (2017).
- J. Kaspar, P. Fornasiero and M. Graziani, Catal. Today, 50, 285 (1999); https://doi.org/10.1016/S0920-5861(98)00510-0
- I.I. Soykal, H. Sohn, B. Bayram, P. Gawade, M.P. Snyder, S.E. Levine, H. Oz and U. Ozkan, Catalysts, 5, 1306 (2015); https://doi.org/10.3390/catal5031306
- J.-Y. Chane-Ching, F. Cobo, D. Aubert, H.G. Harvey, M. Airiau and A. Corma, Chem. Eur. J., 11, 979 (2005); https://doi.org/10.1002/chem.200400535
- C. Pan, D. Zhang and L. Shi, J. Solid State Chem., 181, 1298 (2008); https://doi.org/10.1016/j.jssc.2008.02.011
- V. Ramasamy, V. Mohana and G. Suresh, Int. J. Mater. Sci., 12, 79 (2017).
- A. Stambouli and E. Traversa, Renew. Sustain. Energy Rev., 6, 433 (2002); https://doi.org/10.1016/S1364-0321(02)00014-X
- S. Rajeshkumar and P. Naik, Biotechnol. Rep., 17, 1 (2018); https://doi.org/10.1016/j.btre.2017.11.008
- A. Kumar, M. Kumari, M. Kumar, S. Kumar and D. Kumar, AIP Conf. Proc., 1728, 020444 (2016); https://doi.org/10.1063/1.4946495
- H.I. Chen and H.Y. Chang, Ceram. Int., 31, 795 (2005); https://doi.org/10.1016/j.ceramint.2004.09.006
- E.A. Kusmierek, Catalysts, 10, 1435 (2020); https://doi.org/10.3390/catal10121435
- B. Choudhury, P. Chetri and A. Choudhury, J. Exp. Nanosci., 10, 103 (2015); https://doi.org/10.1080/17458080.2013.801566
- P.P. Ortega, B. Hangai, H. Moreno, L.S.R. Rocha, M.A. Ramírez, M.A. Ponce, E. Longo and A.Z. Simões, J. Alloys Compd., 888, 161517 (2021); https://doi.org/10.1016/j.jallcom.2021.161517
- Y. Qi, J. Ye, S. Zhang, Q. Tian, N. Xu, P. Tian and G. Ning, J. Alloys Compd., 782, 780 (2019); https://doi.org/10.1016/j.jallcom.2018.12.111
- R. Ma, S. Zhang, T. Wen, P. Gu, L. Li, G. Zhao, F. Niu, Q. Huang, Z. Tang and X. Wang, Catal. Today, 335, 20 (2019); https://doi.org/10.1016/j.cattod.2018.11.016
- L. Zhu, H. Li, P. Xia, Z. Liu and D. Xiong, ACS Appl. Mater. Interfaces, 10, 39679 (2018); https://doi.org/10.1021/acsami.8b13782
- S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta and S. Arumainathan, Sci. Rep., 6, 31641 (2016); https://doi.org/10.1038/srep31641
References
G. Renu, V.V. Rani, S.V. Nair, K.R.V. Subramanian and V.K. Lakshmanan, Adv. Sci. Lett., 6, 17 (2012); https://doi.org/10.1166/asl.2012.3312
P. Janoš, J. Ederer, V. Pilarová, J. Henych, J. Tolasz, D. Milde and T. Opletal, Wear, 362-363, 114 (2016); https://doi.org/10.1016/j.wear.2016.05.020
T.T. Phan, T. Tosa and Y. Majima, Sens. Actuators B Chem., 343, 130098 (2021); https://doi.org/10.1016/j.snb.2021.130098
N. N. Dao, M. D. Luu, Q. K. Nguyen and B. S. Kim, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2, 045013 (2011); https://doi.org/10.1088/2043-6262/2/4/045013
A.R. Contreras, E. Casals, V. Puntes, D. Comilis, A. Sanchez and X. Font, Glob. NEST J., 17, 536 (2015); https://doi.org/10.30955/gnj.001687
I.A. Siddiquey, T. Furusawa, Y.I. Hoshi, E. Ukaji, F. Kurayama, M. Sato and N. Suzuki, Appl. Surf. Sci., 255, 2419 (2008); https://doi.org/10.1016/j.apsusc.2008.07.112
B.G. Pound, Solid State Ion., 52, 183 (1992); https://doi.org/10.1016/0167-2738(92)90104-W
S. Tsunekawa, T. Fukuda and A. Kasuya, J. Appl. Phys., 87, 1318 (2000); https://doi.org/10.1063/1.372016
A. Akbari-Fakhrabadi, R. Saravanan, M. Jamshidijam, R.V. Mangalaraja and M.A. Gracia, J. Saudi Chem. Soc., 19, 505 (2015); https://doi.org/10.1016/j.jscs.2015.06.003
J. Saranya, K.S. Ranjith, P. Saravanan, D. Mangalaraj and R.T. Rajendra Kumar, Mater. Res. Semiconduct. Process., 26, 218 (2014); https://doi.org/10.1016/j.mssp.2014.03.054
J. Huang, F. Chen, H. Wang and H. Yan, Res. Chem. Intermed., 44, 2729 (2018); https://doi.org/10.1007/s11164-018-3257-8
A. Syed, L.S.R. Yadav, A.H. Bahkali, A.M. Elgorban, D. Abdul Hakeem and N. Ganganagappa, Crystals, 10, 817 (2020); https://doi.org/10.3390/cryst10090817
A. Zenerino, T. Boutard, C. Bignon, S. Amigoni, D. Josse, T. Devers and F. Guittard, Toxicol. Rep., 2, 1007 (2015); https://doi.org/10.1016/j.toxrep.2015.07.003
K.K. Babitha, A. Sreedevi, K.P. Priyanka, B. Sabu and T. Varghese, Indian J. Pure Appl. Phys., 53, 596 (2015).
N.-A.M. Deraz, Adsorpt. Sci. Technol., 21, 229 (2003); https://doi.org/10.1260/026361703322404386
R. Murugan, G. Ravi, R. Yuvakkumar, S. Rajendran, N. Maheswari, G. Muralidharan and Y. Hayakawa, Ceramics Int., 43, 10494 (2017); https://doi.org/10.1016/j.ceramint.2017.05.096
M. Radovic, Z.D. Dohcevic-Mitrovic, A. Golubovic, B. Matovic, M. Šcepanovic and Z.V. Popovic, Acta Phys. Polon. A, 116, 614 (2009).
P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar and M. Sastry, Nano Lett., 1, 515 (2001); https://doi.org/10.1021/nl0155274
E.K. Goharshadi, S. Samiee and P. Nancarrow, J. Colloid Interface Sci., 356, 473 (2011); https://doi.org/10.1016/j.jcis.2011.01.063
S.S. Behera, J.K. Patra, K. Pramanik, N. Panda and H. Thatoi, World J. Nano Sci. Eng., 2, 196 (2012); https://doi.org/10.4236/wjnse.2012.24026
G. Killivalavan, A.C. Prabakar, K.C. Babu Naidu, B. Sathyaseelan, G. Rameshkumar, D. Sivakumar, K. Senthilnathan, E. Manikandan, I. Baskaran and B. Ramakrishna Rao, Biointerf. Res. Appl. Chem., 10, 5306 (2020); https://doi.org/10.33263/BRIAC102.306311
D.M. Prabaharan, K. Sadaiyandi, M. Mahendran and S. Sagadevan, Mater. Res., 19, 478 (2016); https://doi.org/10.1590/1980-5373-MR-2015-0698
C.R. Martin, Nanomedicine, 1, 5 (2006); https://doi.org/10.2217/17435889.1.1.5
V.D. Kosynkin, A.A. Arzgatkina, E.N. Ivanov, M.G. Chtoutsa, A.I. Grabko, A.V. Kardapolov and N.A. Sysina, J. Alloys Compd., 303- 304, 421 (2000); https://doi.org/10.1016/S0925-8388(00)00651-4
C. Hu, Z. Zhang, H. Liu, P. Gao and Z.L. Wang, Nanotechnology, 17, 5983 (2006); https://doi.org/10.1088/0957-4484/17/24/013
L. Truffault, M.-T. Ta, T. Devers, K. Konstantinov, C. Simmonard, V. Harel, C. Andreazza, I.P. Nevirkovets, A. Pineau, O. Veron and J.-P. Blondeau, Mater. Res. Bull., 45, 527 (2010); https://doi.org/10.1016/j.materresbull.2010.02.008
T.N. Ravishankar, T. Ramakrishnappa, G. Nagaraju and H. Rajanaika, ChemistryOpen, 4, 146 (2015); https://doi.org/10.1002/open.201402046
J. Saranya, K.S. Ranjith, P. Saravanan, D. Mangalaraj and R.T. Rajendra Kumar, Mater. Sci. Semicond. Process., 26, 218 (2014); https://doi.org/10.1016/j.mssp.2014.03.054
M. Kumari, M. Kumar, A. Kumar, S. Kumara and D. Kumar, Synthesis of Lithium Doped Cerium Oxide anoparticle by the Co-precipitation Method, In: Recent Trends in Materials and Devices, Conference Proceedings, pp. 131-137 (2017).
J. Kaspar, P. Fornasiero and M. Graziani, Catal. Today, 50, 285 (1999); https://doi.org/10.1016/S0920-5861(98)00510-0
I.I. Soykal, H. Sohn, B. Bayram, P. Gawade, M.P. Snyder, S.E. Levine, H. Oz and U. Ozkan, Catalysts, 5, 1306 (2015); https://doi.org/10.3390/catal5031306
J.-Y. Chane-Ching, F. Cobo, D. Aubert, H.G. Harvey, M. Airiau and A. Corma, Chem. Eur. J., 11, 979 (2005); https://doi.org/10.1002/chem.200400535
C. Pan, D. Zhang and L. Shi, J. Solid State Chem., 181, 1298 (2008); https://doi.org/10.1016/j.jssc.2008.02.011
V. Ramasamy, V. Mohana and G. Suresh, Int. J. Mater. Sci., 12, 79 (2017).
A. Stambouli and E. Traversa, Renew. Sustain. Energy Rev., 6, 433 (2002); https://doi.org/10.1016/S1364-0321(02)00014-X
S. Rajeshkumar and P. Naik, Biotechnol. Rep., 17, 1 (2018); https://doi.org/10.1016/j.btre.2017.11.008
A. Kumar, M. Kumari, M. Kumar, S. Kumar and D. Kumar, AIP Conf. Proc., 1728, 020444 (2016); https://doi.org/10.1063/1.4946495
H.I. Chen and H.Y. Chang, Ceram. Int., 31, 795 (2005); https://doi.org/10.1016/j.ceramint.2004.09.006
E.A. Kusmierek, Catalysts, 10, 1435 (2020); https://doi.org/10.3390/catal10121435
B. Choudhury, P. Chetri and A. Choudhury, J. Exp. Nanosci., 10, 103 (2015); https://doi.org/10.1080/17458080.2013.801566
P.P. Ortega, B. Hangai, H. Moreno, L.S.R. Rocha, M.A. Ramírez, M.A. Ponce, E. Longo and A.Z. Simões, J. Alloys Compd., 888, 161517 (2021); https://doi.org/10.1016/j.jallcom.2021.161517
Y. Qi, J. Ye, S. Zhang, Q. Tian, N. Xu, P. Tian and G. Ning, J. Alloys Compd., 782, 780 (2019); https://doi.org/10.1016/j.jallcom.2018.12.111
R. Ma, S. Zhang, T. Wen, P. Gu, L. Li, G. Zhao, F. Niu, Q. Huang, Z. Tang and X. Wang, Catal. Today, 335, 20 (2019); https://doi.org/10.1016/j.cattod.2018.11.016
L. Zhu, H. Li, P. Xia, Z. Liu and D. Xiong, ACS Appl. Mater. Interfaces, 10, 39679 (2018); https://doi.org/10.1021/acsami.8b13782
S. Rajendran, M.M. Khan, F. Gracia, J. Qin, V.K. Gupta and S. Arumainathan, Sci. Rep., 6, 31641 (2016); https://doi.org/10.1038/srep31641