Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Spray Deposited Ni Doped Co3O4 Thin Films for Electrochemical Applications
Corresponding Author(s) : K. Mohanraj
Asian Journal of Chemistry,
Vol. 35 No. 1 (2023): Vol 35 Issue 1
Abstract
Nickel-doped Co3O4 films were prepared using fluorine doped tin oxide (FTO) substrates at various nickel concentrations (x = 0.025, 0.05, 0.075 and 0.1) using a spray pyrolyzed process at 300 ºC. Experimental techniques were used to characterize the materials by XRD, SEM, EDAX, UV-Vis, FTIR spectroscopy, magnetic susceptibility and cyclic voltammetry. When nickel is present in any concentration of Co3O4, the structural analysis using XRD confirms the spinel cubic structure of the material. By using a scanning electron microscope, porous morphological studies are conducted. EDAX examines the chemical composition of the prepared thin films. A 0.050 M concentrations demonstrated the ideal structure, good morphological analysis and energy bandgap. Based on the results, the prepared films were effectively used in the electrochemical performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Cho, M.D. Losego, H.G. Zhang, H. Kim, J. Zuo, I. Petrov, D.G. Cahill and P.V. Braun, Nat. Commun., 5, 4035 (2014); https://doi.org/10.1038/ncomms5035
- W.-W. Wang and Y.-J. Zhu, Mater. Res. Bull., 40, 1929 (2005); https://doi.org/10.1016/j.materresbull.2005.06.004
- S.J. Uke, V.P. Akhare, D.R. Bambole, A.B. Bodade and G.N. Chaudhari, Front. Mater., 4, 21 (2017); https://doi.org/10.3389/fmats.2017.00021
- J. Rajeswari, P.S. Kishore, B. Viswanathan and T.K. Varadarajan, Electrochem. Commun., 11, 572 (2009); https://doi.org/10.1016/j.elecom.2008.12.050
- S. Thota, A. Kumar and J. Kumar, Mater. Sci. Eng. B, 164, 30 (2009); https://doi.org/10.1016/j.mseb.2009.06.002
- L. Yao, Y. Xi, G. Xi and Y. Feng, J. Alloys Compd., 680, 73 (2016); https://doi.org/10.1016/j.jallcom.2016.04.092
- H. Razmi and E. Habibi, Electrochim. Acta, 55, 8731 (2010); https://doi.org/10.1016/j.electacta.2010.07.081
- X. Wang, J. Fu, Q. Wang, Z. Dong, X. Wang, A. Hu, W. Wang and S. Yang, Crystals, 10, 720 (2020); https://doi.org/10.3390/cryst10090720
- V.R. Shinde, S.B. Mahadik, T.P. Gujar and C.D. Lokhande, Appl. Surf. Sci., 252, 7487 (2006); https://doi.org/10.1016/j.apsusc.2005.09.004
- Q. Tang, H. Zhu, C. Chen, Y. Wang, Z. Zhu, J. Wu and W. Shih, Mater. Res., 20, 1340 (2017); https://doi.org/10.1590/1980-5373-mr-2017-0322
- I.G. Casella and M. Gatta, J. Electroanal. Chem., 534, 31 (2002); https://doi.org/10.1016/S0022-0728(02)01100-2
- J. Wöllenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Böttner and I. Eisele, Sens. Actuators B Chem., 93, 442 (2003); https://doi.org/10.1016/S0925-4005(03)00168-0
- S.G. Victoria, A.M.E. Raj and C. Ravidhas, Mater. Chem. Phys., 162, 852 (2015); https://doi.org/10.1016/j.matchemphys.2015.07.015
- F. Gu, C. Li, Y. Hu and L. Zhang, J. Cryst. Growth, 304, 369 (2007); https://doi.org/10.1016/j.jcrysgro.2007.03.040
- J. Pal and P. Chauhan, Mater. Charact., 61, 575 (2010); https://doi.org/10.1016/j.matchar.2010.02.017
- Y. Zhang, J. Ge, B. Mahmoudi, S. Förster, F. Syrowatka, A.W. Maijenburg and R. Scheer, ACS Appl. Energy Mater., 3, 3755 (2020); https://doi.org/10.1021/acsaem.0c00230
- B.A.D. Williamson, J. Buckeridge, J. Brown, S. Ansbro, R.G. Palgrave and D.O. Scanlon, Chem. Mater., 29, 2402 (2017); https://doi.org/10.1021/acs.chemmater.6b03306
- X. Wang, Z. Yang, X. Sun, X. Li, D. Wang, P. Wang and D. He, J. Mater. Chem., 21, 9988 (2011); https://doi.org/10.1039/c1jm11490e
- W. Du, R. Liu, Y. Jiang, Q. Lu, Y. Fan and F. Gao, J. Power Sources, 227, 101 (2013); https://doi.org/10.1016/j.jpowsour.2012.11.009
- L. Yang, S. Cheng, Y. Ding, X. Zhu, Z.L. Wang and M. Liu, Nano Lett., 12, 321 (2012); https://doi.org/10.1021/nl203600x
- C. Wang, E. Zhou, W. He, X. Deng, J. Huang, M. Ding, X. Wei, X. Liu and X. Xu, Nanomaterials, 7, 41 (2017); https://doi.org/10.3390/nano7020041
- C. Ravi Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, B. Suji Benjamin, A.M. Ezhil Raj, K. Jeyadheepan and C. Sanjeeviraja, Ceram. Int., 41, 9301 (2015); https://doi.org/10.1016/j.ceramint.2015.03.238
- S. Desai, M. Suryawanshi, S. Bhosale, J. Kim and A. Moholkar, Ceram. Int., 41, 4867 (2015); https://doi.org/10.1016/j.ceramint.2014.12.045
- A. Monshi, M.R. Foroughi and M.R. Monshi, World J. Nano Sci. Eng., 2, 154 (2012); https://doi.org/10.4236/wjnse.2012.23020
- P. Bindu and S. Thomas, J. Theor. Appl. Phys., 8, 123 (2014); https://doi.org/10.1007/s40094-014-0141-9
- B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, Pearson New International Edition, Pearson Education Limited (2013).
- S.G. Kandalkar, J.L. Gunjakar, C.D. Lokhande and O.S. Joo, J. Alloys Compd., 478, 594 (2009); https://doi.org/10.1016/j.jallcom.2008.11.095
- S.M. Al-Shomar, Mater. Res. Express, 7, 036409 (2020); https://doi.org/10.1088/2053-1591/ab815b
- J.P. Jacobs, A. Maltha, J.G.H. Reintjes, J. Drimal, V. Ponec and H.H. Brongersma, J. Catal., 147, 294 (1994); https://doi.org/10.1006/jcat.1994.1140
- M. Shelef, M.A.Z. Wheeler and H.C. Yao, Surf. Sci., 47, 697 (1975); https://doi.org/10.1016/0039-6028(75)90218-6
- J.I. Pankove, Optical Processes in Semiconductors. Englewood Cliffs: Prentice-Hall (1971).
- C. Barbero, G.A. Planes and M.C. Miras, Electrochem. Commun., 3, 113 (2001); https://doi.org/10.1016/S1388-2481(01)00107-2
- X.H. Xia, J.P. Tu, J. Zhang, X.H. Huang, X.L. Wang and X.B. Zhao, Electrochim. Acta, 55, 989 (2010); https://doi.org/10.1016/j.electacta.2009.09.071
- A.J. Bard and L.R. Faulkner, lectrochemical Methods: Fundamentals and Applications, John Wiley & Sons: New York, pp. 482-580 (2001).
- E. Cazzanelli, M. Castriota, R. Kalendarev, A. Kuzmin and J. Purans, Ionics, 9, 95 (2003); https://doi.org/10.1007/BF02376544
- J. Gupta and A.S. Ahmed, Physica B, 599, 412383 (2020); https://doi.org/10.1016/j.physb.2020.412383
- S. Gopinath, K. Sivakumar, B. Karthikeyen, C. Ragupathi and R. Sundaram, Physica E, 81, 66 (2016); https://doi.org/10.1016/j.physe.2016.02.006
References
J. Cho, M.D. Losego, H.G. Zhang, H. Kim, J. Zuo, I. Petrov, D.G. Cahill and P.V. Braun, Nat. Commun., 5, 4035 (2014); https://doi.org/10.1038/ncomms5035
W.-W. Wang and Y.-J. Zhu, Mater. Res. Bull., 40, 1929 (2005); https://doi.org/10.1016/j.materresbull.2005.06.004
S.J. Uke, V.P. Akhare, D.R. Bambole, A.B. Bodade and G.N. Chaudhari, Front. Mater., 4, 21 (2017); https://doi.org/10.3389/fmats.2017.00021
J. Rajeswari, P.S. Kishore, B. Viswanathan and T.K. Varadarajan, Electrochem. Commun., 11, 572 (2009); https://doi.org/10.1016/j.elecom.2008.12.050
S. Thota, A. Kumar and J. Kumar, Mater. Sci. Eng. B, 164, 30 (2009); https://doi.org/10.1016/j.mseb.2009.06.002
L. Yao, Y. Xi, G. Xi and Y. Feng, J. Alloys Compd., 680, 73 (2016); https://doi.org/10.1016/j.jallcom.2016.04.092
H. Razmi and E. Habibi, Electrochim. Acta, 55, 8731 (2010); https://doi.org/10.1016/j.electacta.2010.07.081
X. Wang, J. Fu, Q. Wang, Z. Dong, X. Wang, A. Hu, W. Wang and S. Yang, Crystals, 10, 720 (2020); https://doi.org/10.3390/cryst10090720
V.R. Shinde, S.B. Mahadik, T.P. Gujar and C.D. Lokhande, Appl. Surf. Sci., 252, 7487 (2006); https://doi.org/10.1016/j.apsusc.2005.09.004
Q. Tang, H. Zhu, C. Chen, Y. Wang, Z. Zhu, J. Wu and W. Shih, Mater. Res., 20, 1340 (2017); https://doi.org/10.1590/1980-5373-mr-2017-0322
I.G. Casella and M. Gatta, J. Electroanal. Chem., 534, 31 (2002); https://doi.org/10.1016/S0022-0728(02)01100-2
J. Wöllenstein, M. Burgmair, G. Plescher, T. Sulima, J. Hildenbrand, H. Böttner and I. Eisele, Sens. Actuators B Chem., 93, 442 (2003); https://doi.org/10.1016/S0925-4005(03)00168-0
S.G. Victoria, A.M.E. Raj and C. Ravidhas, Mater. Chem. Phys., 162, 852 (2015); https://doi.org/10.1016/j.matchemphys.2015.07.015
F. Gu, C. Li, Y. Hu and L. Zhang, J. Cryst. Growth, 304, 369 (2007); https://doi.org/10.1016/j.jcrysgro.2007.03.040
J. Pal and P. Chauhan, Mater. Charact., 61, 575 (2010); https://doi.org/10.1016/j.matchar.2010.02.017
Y. Zhang, J. Ge, B. Mahmoudi, S. Förster, F. Syrowatka, A.W. Maijenburg and R. Scheer, ACS Appl. Energy Mater., 3, 3755 (2020); https://doi.org/10.1021/acsaem.0c00230
B.A.D. Williamson, J. Buckeridge, J. Brown, S. Ansbro, R.G. Palgrave and D.O. Scanlon, Chem. Mater., 29, 2402 (2017); https://doi.org/10.1021/acs.chemmater.6b03306
X. Wang, Z. Yang, X. Sun, X. Li, D. Wang, P. Wang and D. He, J. Mater. Chem., 21, 9988 (2011); https://doi.org/10.1039/c1jm11490e
W. Du, R. Liu, Y. Jiang, Q. Lu, Y. Fan and F. Gao, J. Power Sources, 227, 101 (2013); https://doi.org/10.1016/j.jpowsour.2012.11.009
L. Yang, S. Cheng, Y. Ding, X. Zhu, Z.L. Wang and M. Liu, Nano Lett., 12, 321 (2012); https://doi.org/10.1021/nl203600x
C. Wang, E. Zhou, W. He, X. Deng, J. Huang, M. Ding, X. Wei, X. Liu and X. Xu, Nanomaterials, 7, 41 (2017); https://doi.org/10.3390/nano7020041
C. Ravi Dhas, R. Venkatesh, K. Jothivenkatachalam, A. Nithya, B. Suji Benjamin, A.M. Ezhil Raj, K. Jeyadheepan and C. Sanjeeviraja, Ceram. Int., 41, 9301 (2015); https://doi.org/10.1016/j.ceramint.2015.03.238
S. Desai, M. Suryawanshi, S. Bhosale, J. Kim and A. Moholkar, Ceram. Int., 41, 4867 (2015); https://doi.org/10.1016/j.ceramint.2014.12.045
A. Monshi, M.R. Foroughi and M.R. Monshi, World J. Nano Sci. Eng., 2, 154 (2012); https://doi.org/10.4236/wjnse.2012.23020
P. Bindu and S. Thomas, J. Theor. Appl. Phys., 8, 123 (2014); https://doi.org/10.1007/s40094-014-0141-9
B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, Pearson New International Edition, Pearson Education Limited (2013).
S.G. Kandalkar, J.L. Gunjakar, C.D. Lokhande and O.S. Joo, J. Alloys Compd., 478, 594 (2009); https://doi.org/10.1016/j.jallcom.2008.11.095
S.M. Al-Shomar, Mater. Res. Express, 7, 036409 (2020); https://doi.org/10.1088/2053-1591/ab815b
J.P. Jacobs, A. Maltha, J.G.H. Reintjes, J. Drimal, V. Ponec and H.H. Brongersma, J. Catal., 147, 294 (1994); https://doi.org/10.1006/jcat.1994.1140
M. Shelef, M.A.Z. Wheeler and H.C. Yao, Surf. Sci., 47, 697 (1975); https://doi.org/10.1016/0039-6028(75)90218-6
J.I. Pankove, Optical Processes in Semiconductors. Englewood Cliffs: Prentice-Hall (1971).
C. Barbero, G.A. Planes and M.C. Miras, Electrochem. Commun., 3, 113 (2001); https://doi.org/10.1016/S1388-2481(01)00107-2
X.H. Xia, J.P. Tu, J. Zhang, X.H. Huang, X.L. Wang and X.B. Zhao, Electrochim. Acta, 55, 989 (2010); https://doi.org/10.1016/j.electacta.2009.09.071
A.J. Bard and L.R. Faulkner, lectrochemical Methods: Fundamentals and Applications, John Wiley & Sons: New York, pp. 482-580 (2001).
E. Cazzanelli, M. Castriota, R. Kalendarev, A. Kuzmin and J. Purans, Ionics, 9, 95 (2003); https://doi.org/10.1007/BF02376544
J. Gupta and A.S. Ahmed, Physica B, 599, 412383 (2020); https://doi.org/10.1016/j.physb.2020.412383
S. Gopinath, K. Sivakumar, B. Karthikeyen, C. Ragupathi and R. Sundaram, Physica E, 81, 66 (2016); https://doi.org/10.1016/j.physe.2016.02.006