Copyright (c) 2023 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Anti-tyrosinase Activities of Curcumin-Chitosan Gold Nanoparticles Synthesized from Beetle (Oryctes rhinoceros)
Corresponding Author(s) : N. Alyani Zainol Abidin
Asian Journal of Chemistry,
Vol. 35 No. 1 (2023): Vol 35 Issue 1
Abstract
A breakthrough in cosmeceuticals by utilizing insects as major ingredients in cosmetic products is gaining popularity. Therefore, the interest in rare sources of ingredients, for instance, from the Oryctes rhinoceros beetle, can bring huge benefit in turning pest to wealth. In this study, curcumin was chosen as the active ingredient loaded into chitosan-gold nanoparticles (CCG-NPs). However, curcumin is unstable, has poor absorption, a high rate of metabolism and high sensitivity to light. These are all factors that contribute to the lower bioavailability of any substance to reach the target cells. Therefore, chitosan extracted from O. rhinoceros acts as a drug carrier and incorported in gold nanoparticles are used to overcome these problems. The CCG-NPs were successfully synthesized at 70 ºC for 60 min under optimal conditions of reactant ratio of 2:0.5 (0.5 mM HAuCl4:0.1% curcumin). The tyrosinase enzyme inhibition of CCG-NPs from O. rhinoceros was 66.385 ± 3.0%. Thus showing a good inhibition trait for the anti-tyrosinase assay as it is almost double the tyrosinase inhibition percentage when being compared to CCG-NPs from the commercial chitosan. Therefore, CCG-NPs from O. rhinoceros has a high potential in cosmeceutical applications as whitening agent.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Pillaiyar, M. Manickam and V. Namasivayam, J. Enzyme Inhib. Med. Chem., 32, 403 (2017); https://doi.org/10.1080/14756366.2016.1256882
- O. Nerya, R. Musa, S. Khatib, S. Tamir and J. Vaya, Phytochemistry, 65, 1389 (2004); https://doi.org/10.1016/j.phytochem.2004.04.016
- K.-H. Lee, F.H. Ab. Aziz, A. Syahida, F. Abas, K. Shaari, D.A. Israf and N.H. Lajis, Eur. J. Med. Chem., 44, 3195 (2009); https://doi.org/10.1016/j.ejmech.2009.03.020
- N. Saewan, A. Thakam, A. Jintaisong and K. Kittigowitana, Int. J. Pharm. Pharm. Sci., 6, 270 (2014).
- S. Kaul, N. Gulati, D. Verma, S. Mukherjee and U. Nagaich, J. Pharm., 2018, 3420204 (2018); https://doi.org/10.1155/2018/3420204
- T. Tada, K. Ohnishi, K. Suzuki, H. Tomita, M. Okamori, H. Katuzaki, T. Komiya and K. Imai, J. Oleo Sci., 51, 355 (2002); https://doi.org/10.5650/jos.51.355
- M. Triunfo, E. Tafi, A. Guarnieri, C. Scieuzo, T. Hahn, S. Zibek, R. Salvia and P. Falabella, Cosmetics, 8, 40 (2021); https://doi.org/10.3390/cosmetics8020040
- S. El-Ashram, L.M. El-Samad, A.A. Basha and A. El Wakil, Pharmacol. Res., 170, 105749 (2021); https://doi.org/10.1016/j.phrs.2021.105749
- P. Morganti, G. Morganti, G. Fabrizi and A. Cardillo, J. Appl. Cosmetol., 26, 159 (2008).
- A.F. Kotzé, B.J. de Leeuw, H.L. Lueßen, A.G. de Boer, J.C. Verhoef and H.E. Junginger, Int. J. Pharm., 159, 243 (1997); https://doi.org/10.1016/S0378-5173(97)00287-1
- A.C.A. Wan and B.C.U. Tai, Biotechnol. Adv., 31, 1776 (2013); https://doi.org/10.1016/j.biotechadv.2013.09.007
- R.A. Muzzarelli, Eds.: N. Gupta, Chitin Nanostructure in Living Organisms. In Chitin: Formation and Diagenesis, Springer: Dordrecht, pp. 1-34 (2011).
- B.B. Aggarwal, C. Sundaram, N. Malani and H. Ichikawa, Adv. Exp. Med. Biol., 595, 1 (2007); https://doi.org/10.1007/978-0-387-46401-5_1
- C.C. Okaraonye and J.C. Ikewuchi, Pak. J. Nutr., 8, 35 (2008); https://doi.org/10.3923/pjn.2009.35.38
- G.F. Chung, S.C. Sim and M.W. Tan, Chemical Control of Rhinoceros Beetles in the Nursery and Immature Oil Palms, PORIM International Palm Oil Development Conference- Progress, Prospect and Challenges Towards the 21st Century, Kuala Lumpur, Malaysia (1991).
- A. Percot, C. Viton and A. Domard, Biomacromolecules, 4, 12 (2003); https://doi.org/10.1021/bm025602k
- M. Kaya, O. Seyyar, T. Baran, S. Erdogan and M. Kar, Int. J. Biol. Macromol., 65, 553 (2014); https://doi.org/10.1016/j.ijbiomac.2014.02.010
- R.S. Nair, A. Morris, N. Billa and C.O. Leong, AAPS PharmSciTech, 20, 69 (2019); https://doi.org/10.1208/s12249-018-1279-6
- M.S. Latif, F. Kormin, M.K. Mustafa, I.I, Mohamad, M. Khan, S. Abbas, M.I. Ghazali, N.S. Shafie, M.F. Abu Bakar, S.F. Sabran and S.F.Z. Mohamad Fuzi, AIP Conf. Proc., 2016, 020071 (2018); https://doi.org/10.1063/1.5055473
- C.O. Tettey, P.C. Nagajyothi, S.E. Lee, A. Ocloo, T.N. Minh An, T.V.M. Sreekanth and K.D. Lee, Int. J. Cosmet. Sci., 34, 150 (2012); https://doi.org/10.1111/j.1468-2494.2011.00694.x
- N. Rangkadilok, S. Sitthimonchai, L. Worasuttayangkurn, C. Mahidol, M. Ruchirawat and J. Satayavivad, Food Chem. Toxicol., 45, 328 (2007); https://doi.org/10.1016/j.fct.2006.08.022
- S. Khatib, O. Nerya, R. Musa, M. Shmuel, S. Tamir and J. Vaya, Bioorg. Med. Chem., 13, 433 (2005); https://doi.org/10.1016/j.bmc.2004.10.010
- B.C. Lohman, J.A. Powell, S. Cingarapu, C.B. Aakeroy, A. Chakrabarti, K.J. Klabunde, B.M. Law and C.M. Sorensen, Phys. Chem. Chem. Phys., 14, 6509 (2012); https://doi.org/10.1039/c2cp40645d
- B.Y. Yang, C.H. Hu, W.C. Huang, C.Y. Ho, C.H. Yao and C.H. Huang, Polymers, 11, 1745 (2019); https://doi.org/10.3390/polym11111745
- M.N. Yukuyama, E.M. Kato, R. Lobenberg and N.A. Bou-Chacra, Curr. Pharm. Des., 23, 495 (2017); https://doi.org/10.2174/1381612822666161027111957
References
T. Pillaiyar, M. Manickam and V. Namasivayam, J. Enzyme Inhib. Med. Chem., 32, 403 (2017); https://doi.org/10.1080/14756366.2016.1256882
O. Nerya, R. Musa, S. Khatib, S. Tamir and J. Vaya, Phytochemistry, 65, 1389 (2004); https://doi.org/10.1016/j.phytochem.2004.04.016
K.-H. Lee, F.H. Ab. Aziz, A. Syahida, F. Abas, K. Shaari, D.A. Israf and N.H. Lajis, Eur. J. Med. Chem., 44, 3195 (2009); https://doi.org/10.1016/j.ejmech.2009.03.020
N. Saewan, A. Thakam, A. Jintaisong and K. Kittigowitana, Int. J. Pharm. Pharm. Sci., 6, 270 (2014).
S. Kaul, N. Gulati, D. Verma, S. Mukherjee and U. Nagaich, J. Pharm., 2018, 3420204 (2018); https://doi.org/10.1155/2018/3420204
T. Tada, K. Ohnishi, K. Suzuki, H. Tomita, M. Okamori, H. Katuzaki, T. Komiya and K. Imai, J. Oleo Sci., 51, 355 (2002); https://doi.org/10.5650/jos.51.355
M. Triunfo, E. Tafi, A. Guarnieri, C. Scieuzo, T. Hahn, S. Zibek, R. Salvia and P. Falabella, Cosmetics, 8, 40 (2021); https://doi.org/10.3390/cosmetics8020040
S. El-Ashram, L.M. El-Samad, A.A. Basha and A. El Wakil, Pharmacol. Res., 170, 105749 (2021); https://doi.org/10.1016/j.phrs.2021.105749
P. Morganti, G. Morganti, G. Fabrizi and A. Cardillo, J. Appl. Cosmetol., 26, 159 (2008).
A.F. Kotzé, B.J. de Leeuw, H.L. Lueßen, A.G. de Boer, J.C. Verhoef and H.E. Junginger, Int. J. Pharm., 159, 243 (1997); https://doi.org/10.1016/S0378-5173(97)00287-1
A.C.A. Wan and B.C.U. Tai, Biotechnol. Adv., 31, 1776 (2013); https://doi.org/10.1016/j.biotechadv.2013.09.007
R.A. Muzzarelli, Eds.: N. Gupta, Chitin Nanostructure in Living Organisms. In Chitin: Formation and Diagenesis, Springer: Dordrecht, pp. 1-34 (2011).
B.B. Aggarwal, C. Sundaram, N. Malani and H. Ichikawa, Adv. Exp. Med. Biol., 595, 1 (2007); https://doi.org/10.1007/978-0-387-46401-5_1
C.C. Okaraonye and J.C. Ikewuchi, Pak. J. Nutr., 8, 35 (2008); https://doi.org/10.3923/pjn.2009.35.38
G.F. Chung, S.C. Sim and M.W. Tan, Chemical Control of Rhinoceros Beetles in the Nursery and Immature Oil Palms, PORIM International Palm Oil Development Conference- Progress, Prospect and Challenges Towards the 21st Century, Kuala Lumpur, Malaysia (1991).
A. Percot, C. Viton and A. Domard, Biomacromolecules, 4, 12 (2003); https://doi.org/10.1021/bm025602k
M. Kaya, O. Seyyar, T. Baran, S. Erdogan and M. Kar, Int. J. Biol. Macromol., 65, 553 (2014); https://doi.org/10.1016/j.ijbiomac.2014.02.010
R.S. Nair, A. Morris, N. Billa and C.O. Leong, AAPS PharmSciTech, 20, 69 (2019); https://doi.org/10.1208/s12249-018-1279-6
M.S. Latif, F. Kormin, M.K. Mustafa, I.I, Mohamad, M. Khan, S. Abbas, M.I. Ghazali, N.S. Shafie, M.F. Abu Bakar, S.F. Sabran and S.F.Z. Mohamad Fuzi, AIP Conf. Proc., 2016, 020071 (2018); https://doi.org/10.1063/1.5055473
C.O. Tettey, P.C. Nagajyothi, S.E. Lee, A. Ocloo, T.N. Minh An, T.V.M. Sreekanth and K.D. Lee, Int. J. Cosmet. Sci., 34, 150 (2012); https://doi.org/10.1111/j.1468-2494.2011.00694.x
N. Rangkadilok, S. Sitthimonchai, L. Worasuttayangkurn, C. Mahidol, M. Ruchirawat and J. Satayavivad, Food Chem. Toxicol., 45, 328 (2007); https://doi.org/10.1016/j.fct.2006.08.022
S. Khatib, O. Nerya, R. Musa, M. Shmuel, S. Tamir and J. Vaya, Bioorg. Med. Chem., 13, 433 (2005); https://doi.org/10.1016/j.bmc.2004.10.010
B.C. Lohman, J.A. Powell, S. Cingarapu, C.B. Aakeroy, A. Chakrabarti, K.J. Klabunde, B.M. Law and C.M. Sorensen, Phys. Chem. Chem. Phys., 14, 6509 (2012); https://doi.org/10.1039/c2cp40645d
B.Y. Yang, C.H. Hu, W.C. Huang, C.Y. Ho, C.H. Yao and C.H. Huang, Polymers, 11, 1745 (2019); https://doi.org/10.3390/polym11111745
M.N. Yukuyama, E.M. Kato, R. Lobenberg and N.A. Bou-Chacra, Curr. Pharm. Des., 23, 495 (2017); https://doi.org/10.2174/1381612822666161027111957