Copyright (c) 2023 Naorem Premananda Singh Singh, W. Rameshwor Singh, N. Rajmuhon Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of White Light Emission of Dy3+ Doped Gd2O3 Phosphors
Corresponding Author(s) : Naorem Premananda Singh
Asian Journal of Chemistry,
Vol. 35 No. 12 (2023): Vol 35 Issue 12, 2023
Abstract
Dy3+ ion doped Gd2O3 phosphors with varying concentrations were synthesized successfully by hydrothermal process. The XRD patterns and TEM images of prepared samples were well-studied. Upon the emission at λem = 573 nm, the excitation spectra consist of several peaks which denote the characteristic lines of the 4f-4f or 4f-5d intra-configurational transition of Gd3+ and Dy3+ ions. In the emission spectrum obtained by excitations at 234 nm and 273 nm, consist of two characteristic band obtained at 485 and 573 nm, which are attributed to 4F9/2→6H15/2 (blue) and 4F9/2→6H13/2 (yellow) transitions of Dy3+ ion, repectively. The photoluminescence lifetime are found to be at around 0.599-1.200 ms. The CIE Chromaticity coordinates showed the prepared samples could be used as a white light emitting phosphor applied in near UV region.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Mouzon, P. Nordell, A. Thomas and M. Oden, J. Eur. Ceram. Soc., 27, 1991 (2007); https://doi.org/10.1016/j.jeurceramsoc.2006.05.103
- I. Gupta, S. Singh, S. Bhagwan and D. Singh, Ceram. Int., 47, 19282 (2021); https://doi.org/10.1016/j.ceramint.2021.03.308
- B.O. Dabbousi, G.M. Bawendi, O. Onitsuka and M.F. Rubner, Appl. Phys. Lett., 66, 1316 (1995); https://doi.org/10.1063/1.113227
- M. Nichkova, D. Dosev, S.J. Gee, B.D. Hammock and I.M. Kennedy, Anal. Chem., 77, 6864 (2005); https://doi.org/10.1021/ac050826p
- Y. Zhydachevskyy, V. Tsiumra, M. Baran, L. Lipiñska, P. Sybilski and A. Suchocki, J. Lumin., 196, 169 (2018); https://doi.org/10.1016/j.jlumin.2017.12.042
- R.S. Ningthoujam, R. Shukla, R.K. Vatsa, V. Duppel, L. Kienle and A.K. Tyagi, J. Appl. Phys., 105, 084304 (2009); https://doi.org/10.1063/1.3098253
- Z. Zhou and Z.R. Lu, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5, 1 (2013); https://doi.org/10.1002/wnan.1198
- J. Chen, Y. Song, D. Li, Q. Ma, X. Dong, W. Yu, X. Wang, Y. Yang, J. Wang and G. Liu, J. Lumin., 206, 509 (2019); https://doi.org/10.1016/j.jlumin.2018.10.087
- B.K. Cha, J.Y. Kim, G. Cho, C.-W. Seo, S. Jeon and Y. Huh, Nucl. Instrum. Methods Phys. Res. A, 648, S12 (2011); https://doi.org/10.1016/j.nima.2011.02.016
- A. Tiwari, D. Terada, P.K. Sharma, V. Parashar, C. Yoshikawa, A.C. Pandey and H. Kobayashi, Anal. Methods, 3, 217 (2011); https://doi.org/10.1039/C0AY00574F
- D. Dosev, I.M. Kennedy, M. Godlewski, I. Gryczynski, K. Tomsia and E.M. Goldys, Appl. Phys. Lett., 88, 011906 (2006); https://doi.org/10.1063/1.2161400
- Y. Li and G. Hong, J. Lumin., 124, 297 (2007); https://doi.org/10.1016/j.jlumin.2006.03.016
- A.J.M. Ramírez, A.G. Murillo, F.J.C. Romo, M.G. Hernández, D.J. Vigueras, G. Chaderyron and D. Boyer, Mater. Res. Bull., 45, 40 (2010); https://doi.org/10.1016/j.materresbull.2009.09.005
- Z. Xu, J. Yang, Z. Hou, C. Li, C. Zhang, Sh. Huang and J. Lin, Mater. Res. Bull., 44, 1850 (2009); https://doi.org/10.1016/j.materresbull.2009.05.017
- R. Priya and O.P. Pandey, Vacuum, 156, 283 (2018); https://doi.org/10.1016/j.vacuum.2018.07.038
- B. Qian, Z. Wang, X. Zhou, H. Zou, Y. Song and Y. Sheng, Ceram. Int., 46, 25249 (2020); https://doi.org/10.1016/j.ceramint.2020.06.317
- P. Meejitpaisan, S. Kaewjaeng, Y. Ruangthaweep, N. Sangwarantee and J. Kaewkhao, Mater. Today Proc., 43, 2574 (2021); https://doi.org/10.1016/j.matpr.2020.04.619
- L. Peng, T. Han, H. Chen and T. Zhang, J. Rare Earths, 31, 235 (2013); https://doi.org/10.1016/S1002-0721(12)60264-6
- H. Samata, Sh. Imanaka, M. Hanioka and T.C. Ozawa, J. Rare Earths, 33, 712 (2015); https://doi.org/10.1016/S1002-0721(14)60475-0
- B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao and R. Zhang, J. Alloys Compd., 440, 341 (2007); https://doi.org/10.1016/j.jallcom.2006.09.036
- R.K. Tamrakar, K. Upadhyay, I.P. Sahu and D.P. Bisen, Optik, 135, 281 (2017); https://doi.org/10.1016/j.ijleo.2017.01.081
- J.M. Nedelec, D. Avignant and R. Mahiou, Chem. Mater., 14, 651 (2002); https://doi.org/10.1021/cm010572y
- T.T.T. Chanu, N. Yaiphaba and N.R. Singh, J. Ceram., 43, 10239 (2017); https://doi.org/10.1016/j.ceramint.2017.05.051
- G. Blasse and B.C. Grabmair, Luminescent Materials, Springer Verlag, Berlin (1994).
References
J. Mouzon, P. Nordell, A. Thomas and M. Oden, J. Eur. Ceram. Soc., 27, 1991 (2007); https://doi.org/10.1016/j.jeurceramsoc.2006.05.103
I. Gupta, S. Singh, S. Bhagwan and D. Singh, Ceram. Int., 47, 19282 (2021); https://doi.org/10.1016/j.ceramint.2021.03.308
B.O. Dabbousi, G.M. Bawendi, O. Onitsuka and M.F. Rubner, Appl. Phys. Lett., 66, 1316 (1995); https://doi.org/10.1063/1.113227
M. Nichkova, D. Dosev, S.J. Gee, B.D. Hammock and I.M. Kennedy, Anal. Chem., 77, 6864 (2005); https://doi.org/10.1021/ac050826p
Y. Zhydachevskyy, V. Tsiumra, M. Baran, L. Lipiñska, P. Sybilski and A. Suchocki, J. Lumin., 196, 169 (2018); https://doi.org/10.1016/j.jlumin.2017.12.042
R.S. Ningthoujam, R. Shukla, R.K. Vatsa, V. Duppel, L. Kienle and A.K. Tyagi, J. Appl. Phys., 105, 084304 (2009); https://doi.org/10.1063/1.3098253
Z. Zhou and Z.R. Lu, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 5, 1 (2013); https://doi.org/10.1002/wnan.1198
J. Chen, Y. Song, D. Li, Q. Ma, X. Dong, W. Yu, X. Wang, Y. Yang, J. Wang and G. Liu, J. Lumin., 206, 509 (2019); https://doi.org/10.1016/j.jlumin.2018.10.087
B.K. Cha, J.Y. Kim, G. Cho, C.-W. Seo, S. Jeon and Y. Huh, Nucl. Instrum. Methods Phys. Res. A, 648, S12 (2011); https://doi.org/10.1016/j.nima.2011.02.016
A. Tiwari, D. Terada, P.K. Sharma, V. Parashar, C. Yoshikawa, A.C. Pandey and H. Kobayashi, Anal. Methods, 3, 217 (2011); https://doi.org/10.1039/C0AY00574F
D. Dosev, I.M. Kennedy, M. Godlewski, I. Gryczynski, K. Tomsia and E.M. Goldys, Appl. Phys. Lett., 88, 011906 (2006); https://doi.org/10.1063/1.2161400
Y. Li and G. Hong, J. Lumin., 124, 297 (2007); https://doi.org/10.1016/j.jlumin.2006.03.016
A.J.M. Ramírez, A.G. Murillo, F.J.C. Romo, M.G. Hernández, D.J. Vigueras, G. Chaderyron and D. Boyer, Mater. Res. Bull., 45, 40 (2010); https://doi.org/10.1016/j.materresbull.2009.09.005
Z. Xu, J. Yang, Z. Hou, C. Li, C. Zhang, Sh. Huang and J. Lin, Mater. Res. Bull., 44, 1850 (2009); https://doi.org/10.1016/j.materresbull.2009.05.017
R. Priya and O.P. Pandey, Vacuum, 156, 283 (2018); https://doi.org/10.1016/j.vacuum.2018.07.038
B. Qian, Z. Wang, X. Zhou, H. Zou, Y. Song and Y. Sheng, Ceram. Int., 46, 25249 (2020); https://doi.org/10.1016/j.ceramint.2020.06.317
P. Meejitpaisan, S. Kaewjaeng, Y. Ruangthaweep, N. Sangwarantee and J. Kaewkhao, Mater. Today Proc., 43, 2574 (2021); https://doi.org/10.1016/j.matpr.2020.04.619
L. Peng, T. Han, H. Chen and T. Zhang, J. Rare Earths, 31, 235 (2013); https://doi.org/10.1016/S1002-0721(12)60264-6
H. Samata, Sh. Imanaka, M. Hanioka and T.C. Ozawa, J. Rare Earths, 33, 712 (2015); https://doi.org/10.1016/S1002-0721(14)60475-0
B. Liu, M. Gu, X. Liu, C. Ni, D. Wang, L. Xiao and R. Zhang, J. Alloys Compd., 440, 341 (2007); https://doi.org/10.1016/j.jallcom.2006.09.036
R.K. Tamrakar, K. Upadhyay, I.P. Sahu and D.P. Bisen, Optik, 135, 281 (2017); https://doi.org/10.1016/j.ijleo.2017.01.081
J.M. Nedelec, D. Avignant and R. Mahiou, Chem. Mater., 14, 651 (2002); https://doi.org/10.1021/cm010572y
T.T.T. Chanu, N. Yaiphaba and N.R. Singh, J. Ceram., 43, 10239 (2017); https://doi.org/10.1016/j.ceramint.2017.05.051
G. Blasse and B.C. Grabmair, Luminescent Materials, Springer Verlag, Berlin (1994).