Copyright (c) 2023 Sai Siddhartha Olety, S V Satyanarayana Suggula, Kanakaraju Pattaswamy
This work is licensed under a Creative Commons Attribution 4.0 International License.
Role of Oxides of Iron on the Combustion of Composite Solid Propellants: A Review
Corresponding Author(s) : Sai Siddhartha Olety
Asian Journal of Chemistry,
Vol. 35 No. 12 (2023): Vol 35 Issue 12, 2023
Abstract
The effects of iron oxides (α-Fe2O3, γ-Fe2O3, Fe3O4 in the different size ranges from micron to nano) on the combustion of composite solid propellants, also known as hydroxyl terminated polybutadiene/aluminium/ammonium perchlorate (HTPB/Al/AP) systems, are thoroughly reviewed in this work. The effect of the oxides of iron in (i) condensed phase; (ii) sub-surface and surface; (iii) premix flame (gas phase); and (iv) final flame (gas phase) in deflagration zone are also critically reviewed. The effect of catalyst on the lower pressure limit (LPL), upper pressure limit (UPL) and ignition delay is also studied as a part of the combustion phases. It is understood that unlike during the combustion of pure ammonium perchlorate, the role of iron oxides starts its influence on binder system degradation, binder-ammonium perchlorate reactions at surface and HClO4 decomposition in gas phase. The role of aluminium is to contribute for larger energies in both primary and diffusion flame zone, the heat generated accelerates the surface reactions further. Another interesting topic is nano-oxides of iron, since nanosize contribute for definite increase in burn rate, but the disadvantage of agglomerations both at mixing level and combustion level needs to be addressed. Several strategies are suggested, with the most significant ones being co-precipitation with ammonium perchlorate and the utilization of dispersion agents.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T. Urbanski, Chemistry and Technology of Explosives, Pergamon Press, vols. 1-4, (1964, 1965, 1967, 1984).
- J. Roth and E.L. Capener, Encyclopedia of Explosives and Related Items, US Army Armament Research and Development Command, New Jersey, vol. 8 (1978).
- J. Akhavan, The Chemistry of Explosives, The Royal Society of Chemistry, Cambridge, UK (1998).
- S. Venkatachalam, G. Santhosh and K.N. Ninan, High Energy Oxidizers for Advanced Solid Propellants and Explosives, Advances in Solid Propellant Technology, First International HEMSI Workshop, Ranchi, India, pp 87-106 (2002).
- K. Kishore and M.R. Sunitha, AIAA J., 17, 1118 (1979); https://doi.org/10.2514/3.61286
- P.W.M. Jacobs and H.M. Whitehead, Chem. Rev., 69, 551 (1969); https://doi.org/10.1021/cr60260a005
- R.S. Brown, R. Anderson and L.J. Shannon, Adv. Chem. Eng., 7, 1 (1968); https://doi.org/10.1016/S0065-2377(08)60080-0
- A.R. Hall and G.S. Pearson, Ammonium Perchlorate; A Review of its Role in Composite Propellant Combustion, RPE Technical Report No. 67/1, pp. 164 (1967).
- G.P. Sutton, Rocket Propulsion Elements, Wiley, New York, Edn. 9 (2017).
- A.G. Keenan and R.F. Siegmund, Q. Rev. Chem. Soc., 23, 430 (1969); https://doi.org/10.1039/qr9692300430
- V.V. Boldyrev, Thermochim. Acta, 443, 1 (2006); https://doi.org/10.1016/j.tca.2005.11.038
- S. Chaturvedi, P.N. Dave, N.N. Patel and P. Ram, Int. J. Energ. Mater. Chem. Propuls, 15, 371 (2016); https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2017019911
- T. Chen, Y.W. Hu, C. Zhang and Z. Gao, Defence Technol., 17, 1471 (2021); https://doi.org/10.1016/j.dt.2020.08.004
- J.A. Vara, P.N. Dave and V.R. Ram, Nano-Struct. Nano-Objects, 20, 100372 (2019); https://doi.org/10.1016/j.nanoso.2019.100372
- K. Kishore, V.R. Pai Verneker and M.N. Radhakrishnan Nair, AIAA J., 13, 1240 (1975); https://doi.org/10.2514/3.6981
- S. Krishnan and C. Periasamy, AIAA J., 24, 1670 (1986); https://doi.org/10.2514/3.9499
- S.H. Inami, Y. Rajapakse, R. Shaw and H. Wise, Combust. Flame, 17, 189 (1971); https://doi.org/10.1016/S0010-2180(71)80161-X
- K. Kishore and K. Sridhara, Solid Propellant Chemistry, DESIDOC, DRDO, New Delhi (1999).
- H. Wise, S.H. Inami and L. McCulley, Combust. Flame, 11, 483 (1967); https://doi.org/10.1016/0010-2180(67)90089-2
- C.U. Pittman Jr., AIAA J., 7, 328 (1969); https://doi.org/10.2514/3.5094
- K. Kishore, V.R.P. Verneker and M.R. Sunitha, AIAA J., 15, 1649 (1977); https://doi.org/10.2514/3.7466
- K. Kishore and M.R. Sunitha, Combust. Flame, 33, 311 (1978); https://doi.org/10.1016/0010-2180(78)90070-6
- J. Powling and W.A.W. Smith, Combust. Flame, 6, 173 (1962); https://doi.org/10.1016/0010-2180(62)90087-1
- G.S. Pearson, Combust. Flame, 14, 73 (1970); https://doi.org/10.1016/S0010-2180(70)80012-8
- G.S. Pearson and D. Sutton, AIAA J., 7, 770 (1969); https://doi.org/10.2514/3.5215
- C.H. Burnside, Correlation of Fe2O3 Surface Area and Propellant Burning Rate, AIAA Paper. No.75-234 (1975).
- K.O. Hartman, Effect of Doped Ammonium Perchlorate on Composite Propellant Burning Rate, Proceedings of the Spring Meeting of the Western States Section, Combustion Institute, Paper No. WSS/CI-69-18, U.S. Naval Weapons Center, China Lake, California, USA, p. 24 (1969).
- V.K. Bobolev, M.Ya. Gen, V.M. Maltsev, G.P. Melesov, F.F. Pokhil, V.A. Seleznev, A.N. Stasenko and S.V. Chuiko, Fiz. Goren. Vzryva, 3, 366 (1971).
- V.S. Nikiforov and N.N. Bakhman, Fizika Goreniia Vyzryva, 5, 270 (1969).
- V.S. Nikiforov and N.N. Bakhman, Fiz. Goren. Vzryva, 9, 599 (1973).
- N.N. Bakhman, V.S. Nikiforov, V.I. Avdyunin, A.E. Fogelzang and Yu.S. Kichin, Combust. Flame, 22, 77 (1974); https://doi.org/10.1016/0010-2180(74)90012-1
- T.I. Andrianoya et al., Zh. Fizicheskoi Khim., 47, 410 (1973).
- O.I. Leipenskii, A.A. Zenin and V.M. Puchkov, Chem. Abstr., 80, 38934x (1974).
- V.I. Avdyunin, N.N. Bakhman, V.S. Nikiforov, A.E. Fogelzang and Yu.S. Kichin, Khim. Khimicheskaya Tekhnol., 14, 666 (1971).
- O.P. Korobeinichev, G.I. Anisiforov and A.V. Shkaria, Fiz. Goren. Vzryva, 9, 67 (1973).
- O.P. Korobeinichev, G.I. Anisiforov and A.G. Terschenko, Study of High Temperature Kinetics and Mechanism of Thermal Decomposition of Mixtures of Ammonium Perchlorate-Polymeric Binder-Catalyst Using the Time of Flight Mass Spectrometer, AIAA Paper 74-231, 12th Aerospace Sciences Meeting, 30 January 1974 - 01 February 1974 Washington, DC, U.S.A. (1974); https://doi.org/10.2514/6.1974-231
- A.A. Shidlovskii, L.F. Shmagin and V.V. Bulanova, Khimicheskaya Technol., 8, 533 (1965).
- R. Friedman, R.G. Nugent, K.E. Rumbel and A.C. Scurlock, Deflagration of Ammonium Perchlorate, VIth Symposium (International) on Combustion, Reinhold Publishing Corp., New York, p. 612 (1956).
- F. Shadman-Yazdi and E.E. Petersen, Combust. Sci. Technol., 5, 61 (1972); https://doi.org/10.1080/00102207208952504
- T.L. Boggs, D.E. Zurn, H.F. Cordes and J. Covino, J. Propuls. Power, 4, 27 (1988); https://doi.org/10.2514/3.23028
- S. Krishnan and R. Jeenu, J. Propuls. Power, 8, 748 (1992); https://doi.org/10.2514/3.23545
- S. Krishnan and R. Jeenu, AIAA J., 30, 2788 (1992); https://doi.org/10.2514/3.11303
- M.W. Beckstead, R.L. Derr and C.F. Price, AIAA J., 8, 2200 (1970); https://doi.org/10.2514/3.6087
- N.S. Cohen, AIAA J., 18, 277 (1980); https://doi.org/10.2514/3.50761
- M.W. Beckstead, A Model for Solid Propellant Combustion, Proceedings of 14th J ANNAF Combustion Meeting, CPIA Pub. 292, Johns Hopkins University, Baltimore, MD, vol. I, pp 281-306, December (1977).
- E.W. Price and J.K. Sambamurthi, Mechanism of Burn Rate Enhancement by Ferric Oxide, Chemical Propulsion Information Agency, CPIA Publ. 412, John Hopkins University, Baltimore, MD, USA, vol. 1 (1984).
- N.S. Cohen, R.W. Fleming and R.L. Derr, AIAA J., 12, 212 (1974); https://doi.org/10.2514/3.49195
- H.E. Jones and W.C. Strahle, Effects of Copper Chromite and Iron Oxide Catalysts on AP/CTPB Sandwiches, 14th Symposium (International) on Combustion, Combustion Inst., Pittsburgh, PA, USA, pp 1287-1295 (1972).
- V.S. Logachev, A.S. Dmitriev and P.F. Pokhil, Chem. Abstr., 81, 54760 (1974).
- S.R. Chakravarthy, E.W. Price and R.K. Sigman, J. Propuls. Power, 13, 471 (1997); https://doi.org/10.2514/2.5208
- K. Ishitha and P.A. Ramakrishna, Combust. Flame, 161, 2717 (2014); https://doi.org/10.1016/j.combustflame.2014.03.015
- O.P. Korobeinichev, G.I. Anisiforov and A.V. Shkarin, Combust. Explos. Shock Waves, 9, 54 (1973); https://doi.org/10.1007/BF00740360
- V.F. Komarov, Combust. Explos. Shock Waves, 35, 670 (1999); https://doi.org/10.1007/BF02674542
- P.R. Patil and V.N. Krishnamurthy and S.S. Joshi, Propell. Explos. Pyrot., 31, 442 (2006); https://doi.org/10.1002/prep.200600059
- M. Kohga, Propellants Explos. Pyrotech., 36, 57 (2011); https://doi.org/10.1002/prep.200900088
- K. Fujimura and A. Miyake, Sci. Technol. Energ. Mater., 71, 65 (2010).
- S. Isert, L.J. Groven, R.P. Lucht and S.F. Son, Combust. Flame, 162, 1821 (2014); https://doi.org/10.1016/j.combustflame.2014.11.040
- J.K. Sharma, P. Srivastava, M.S. Akhtar, G. Singh and S. Ameen, New J. Chem., 39, 7105 (2015); https://doi.org/10.1039/C5NJ01344E
- M. Kohga and S. Togo, Combust. Sci. Technol., 192, 1668 (2019); https://doi.org/10.1080/00102202.2019.1620736
- M. Kohga, R. Togashi, H. Tsutiya and Y. Ota, Combust. Flame, 246, 112459 (2022); https://doi.org/10.1016/j.combustflame.2022.112459
- Y.J. Yoo, Hwahak Konghak, 25, 442 (1987).
- Z. Ma, F. Li and H. Bai, Propell. Explos. Pyrot., 31, 447 (2006); https://doi.org/10.1002/prep.200600060
- Y. Wang, X. Xia, J. Zhu, Y. Li, X. Wang and X. Hu, Combust. Sci. Technol., 183, 154 (2010); https://doi.org/10.1080/00102202.2010.507561
- W. Pang, L.T. De Luca, X. Fan, F. Maggi, H. Xu, W. Xie and X. Shi, Combust. Sci. Technol., (2015); https://doi.org/10.1080/00102202.2015.1083986
- A.R. Demko, C.A. Dillier, G.R. Morrow, T. Sammet, K. Grossman, S. Seal and E.L. Petersen, Laboratory-Scale Burning of Composite Solid Propellant using in-situ Synthesized Iron Oxide, 52nd AIAA/SAE/ASEE Joint Propulsion Conference - Salt Lake City, UT July 25-27, (2016); https://doi.org/10.2514/6.2016-5115
- G. Marothiya, C. Vijay, K. Ishitha and P.A. Ramakrishna, Combust. Flame, 182, 114 (2017); https://doi.org/10.1016/j.combustflame.2017.04.010
- A.S. Budhwar, G. Aashish, P.V. More, P.C. Shekhar, B. Shaibal and P.K. Khanna, Vacuum, 156, 483 (2018); https://doi.org/10.1016/j.vacuum.2018.08.013
- F. Maggi, S. Dossi, C. Paravan, L. Galfetti, R. Rota, S. Cianfanelli, G. Marra, Acta Astronaut., 158, 416 (2018); https://doi.org/10.1016/j.actaastro.2018.07.037
- R. Sangtyani, H.S. Saha, A. Kumar, A. Kumar, M. Gupta and P.V. Chavan, Combust. Flame, 209, 357 (2019); https://doi.org/10.1016/j.combustflame.2019.04.054
- J. Liu, H. Yu, L. Wang, S.Z. Vatsadze, Z. Huang and B.U. Amin, J. Organomet. Chem., 980–981, 122514 (2022); https://doi.org/10.1016/j.jorganchem.2022.122514
References
T. Urbanski, Chemistry and Technology of Explosives, Pergamon Press, vols. 1-4, (1964, 1965, 1967, 1984).
J. Roth and E.L. Capener, Encyclopedia of Explosives and Related Items, US Army Armament Research and Development Command, New Jersey, vol. 8 (1978).
J. Akhavan, The Chemistry of Explosives, The Royal Society of Chemistry, Cambridge, UK (1998).
S. Venkatachalam, G. Santhosh and K.N. Ninan, High Energy Oxidizers for Advanced Solid Propellants and Explosives, Advances in Solid Propellant Technology, First International HEMSI Workshop, Ranchi, India, pp 87-106 (2002).
K. Kishore and M.R. Sunitha, AIAA J., 17, 1118 (1979); https://doi.org/10.2514/3.61286
P.W.M. Jacobs and H.M. Whitehead, Chem. Rev., 69, 551 (1969); https://doi.org/10.1021/cr60260a005
R.S. Brown, R. Anderson and L.J. Shannon, Adv. Chem. Eng., 7, 1 (1968); https://doi.org/10.1016/S0065-2377(08)60080-0
A.R. Hall and G.S. Pearson, Ammonium Perchlorate; A Review of its Role in Composite Propellant Combustion, RPE Technical Report No. 67/1, pp. 164 (1967).
G.P. Sutton, Rocket Propulsion Elements, Wiley, New York, Edn. 9 (2017).
A.G. Keenan and R.F. Siegmund, Q. Rev. Chem. Soc., 23, 430 (1969); https://doi.org/10.1039/qr9692300430
V.V. Boldyrev, Thermochim. Acta, 443, 1 (2006); https://doi.org/10.1016/j.tca.2005.11.038
S. Chaturvedi, P.N. Dave, N.N. Patel and P. Ram, Int. J. Energ. Mater. Chem. Propuls, 15, 371 (2016); https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.2017019911
T. Chen, Y.W. Hu, C. Zhang and Z. Gao, Defence Technol., 17, 1471 (2021); https://doi.org/10.1016/j.dt.2020.08.004
J.A. Vara, P.N. Dave and V.R. Ram, Nano-Struct. Nano-Objects, 20, 100372 (2019); https://doi.org/10.1016/j.nanoso.2019.100372
K. Kishore, V.R. Pai Verneker and M.N. Radhakrishnan Nair, AIAA J., 13, 1240 (1975); https://doi.org/10.2514/3.6981
S. Krishnan and C. Periasamy, AIAA J., 24, 1670 (1986); https://doi.org/10.2514/3.9499
S.H. Inami, Y. Rajapakse, R. Shaw and H. Wise, Combust. Flame, 17, 189 (1971); https://doi.org/10.1016/S0010-2180(71)80161-X
K. Kishore and K. Sridhara, Solid Propellant Chemistry, DESIDOC, DRDO, New Delhi (1999).
H. Wise, S.H. Inami and L. McCulley, Combust. Flame, 11, 483 (1967); https://doi.org/10.1016/0010-2180(67)90089-2
C.U. Pittman Jr., AIAA J., 7, 328 (1969); https://doi.org/10.2514/3.5094
K. Kishore, V.R.P. Verneker and M.R. Sunitha, AIAA J., 15, 1649 (1977); https://doi.org/10.2514/3.7466
K. Kishore and M.R. Sunitha, Combust. Flame, 33, 311 (1978); https://doi.org/10.1016/0010-2180(78)90070-6
J. Powling and W.A.W. Smith, Combust. Flame, 6, 173 (1962); https://doi.org/10.1016/0010-2180(62)90087-1
G.S. Pearson, Combust. Flame, 14, 73 (1970); https://doi.org/10.1016/S0010-2180(70)80012-8
G.S. Pearson and D. Sutton, AIAA J., 7, 770 (1969); https://doi.org/10.2514/3.5215
C.H. Burnside, Correlation of Fe2O3 Surface Area and Propellant Burning Rate, AIAA Paper. No.75-234 (1975).
K.O. Hartman, Effect of Doped Ammonium Perchlorate on Composite Propellant Burning Rate, Proceedings of the Spring Meeting of the Western States Section, Combustion Institute, Paper No. WSS/CI-69-18, U.S. Naval Weapons Center, China Lake, California, USA, p. 24 (1969).
V.K. Bobolev, M.Ya. Gen, V.M. Maltsev, G.P. Melesov, F.F. Pokhil, V.A. Seleznev, A.N. Stasenko and S.V. Chuiko, Fiz. Goren. Vzryva, 3, 366 (1971).
V.S. Nikiforov and N.N. Bakhman, Fizika Goreniia Vyzryva, 5, 270 (1969).
V.S. Nikiforov and N.N. Bakhman, Fiz. Goren. Vzryva, 9, 599 (1973).
N.N. Bakhman, V.S. Nikiforov, V.I. Avdyunin, A.E. Fogelzang and Yu.S. Kichin, Combust. Flame, 22, 77 (1974); https://doi.org/10.1016/0010-2180(74)90012-1
T.I. Andrianoya et al., Zh. Fizicheskoi Khim., 47, 410 (1973).
O.I. Leipenskii, A.A. Zenin and V.M. Puchkov, Chem. Abstr., 80, 38934x (1974).
V.I. Avdyunin, N.N. Bakhman, V.S. Nikiforov, A.E. Fogelzang and Yu.S. Kichin, Khim. Khimicheskaya Tekhnol., 14, 666 (1971).
O.P. Korobeinichev, G.I. Anisiforov and A.V. Shkaria, Fiz. Goren. Vzryva, 9, 67 (1973).
O.P. Korobeinichev, G.I. Anisiforov and A.G. Terschenko, Study of High Temperature Kinetics and Mechanism of Thermal Decomposition of Mixtures of Ammonium Perchlorate-Polymeric Binder-Catalyst Using the Time of Flight Mass Spectrometer, AIAA Paper 74-231, 12th Aerospace Sciences Meeting, 30 January 1974 - 01 February 1974 Washington, DC, U.S.A. (1974); https://doi.org/10.2514/6.1974-231
A.A. Shidlovskii, L.F. Shmagin and V.V. Bulanova, Khimicheskaya Technol., 8, 533 (1965).
R. Friedman, R.G. Nugent, K.E. Rumbel and A.C. Scurlock, Deflagration of Ammonium Perchlorate, VIth Symposium (International) on Combustion, Reinhold Publishing Corp., New York, p. 612 (1956).
F. Shadman-Yazdi and E.E. Petersen, Combust. Sci. Technol., 5, 61 (1972); https://doi.org/10.1080/00102207208952504
T.L. Boggs, D.E. Zurn, H.F. Cordes and J. Covino, J. Propuls. Power, 4, 27 (1988); https://doi.org/10.2514/3.23028
S. Krishnan and R. Jeenu, J. Propuls. Power, 8, 748 (1992); https://doi.org/10.2514/3.23545
S. Krishnan and R. Jeenu, AIAA J., 30, 2788 (1992); https://doi.org/10.2514/3.11303
M.W. Beckstead, R.L. Derr and C.F. Price, AIAA J., 8, 2200 (1970); https://doi.org/10.2514/3.6087
N.S. Cohen, AIAA J., 18, 277 (1980); https://doi.org/10.2514/3.50761
M.W. Beckstead, A Model for Solid Propellant Combustion, Proceedings of 14th J ANNAF Combustion Meeting, CPIA Pub. 292, Johns Hopkins University, Baltimore, MD, vol. I, pp 281-306, December (1977).
E.W. Price and J.K. Sambamurthi, Mechanism of Burn Rate Enhancement by Ferric Oxide, Chemical Propulsion Information Agency, CPIA Publ. 412, John Hopkins University, Baltimore, MD, USA, vol. 1 (1984).
N.S. Cohen, R.W. Fleming and R.L. Derr, AIAA J., 12, 212 (1974); https://doi.org/10.2514/3.49195
H.E. Jones and W.C. Strahle, Effects of Copper Chromite and Iron Oxide Catalysts on AP/CTPB Sandwiches, 14th Symposium (International) on Combustion, Combustion Inst., Pittsburgh, PA, USA, pp 1287-1295 (1972).
V.S. Logachev, A.S. Dmitriev and P.F. Pokhil, Chem. Abstr., 81, 54760 (1974).
S.R. Chakravarthy, E.W. Price and R.K. Sigman, J. Propuls. Power, 13, 471 (1997); https://doi.org/10.2514/2.5208
K. Ishitha and P.A. Ramakrishna, Combust. Flame, 161, 2717 (2014); https://doi.org/10.1016/j.combustflame.2014.03.015
O.P. Korobeinichev, G.I. Anisiforov and A.V. Shkarin, Combust. Explos. Shock Waves, 9, 54 (1973); https://doi.org/10.1007/BF00740360
V.F. Komarov, Combust. Explos. Shock Waves, 35, 670 (1999); https://doi.org/10.1007/BF02674542
P.R. Patil and V.N. Krishnamurthy and S.S. Joshi, Propell. Explos. Pyrot., 31, 442 (2006); https://doi.org/10.1002/prep.200600059
M. Kohga, Propellants Explos. Pyrotech., 36, 57 (2011); https://doi.org/10.1002/prep.200900088
K. Fujimura and A. Miyake, Sci. Technol. Energ. Mater., 71, 65 (2010).
S. Isert, L.J. Groven, R.P. Lucht and S.F. Son, Combust. Flame, 162, 1821 (2014); https://doi.org/10.1016/j.combustflame.2014.11.040
J.K. Sharma, P. Srivastava, M.S. Akhtar, G. Singh and S. Ameen, New J. Chem., 39, 7105 (2015); https://doi.org/10.1039/C5NJ01344E
M. Kohga and S. Togo, Combust. Sci. Technol., 192, 1668 (2019); https://doi.org/10.1080/00102202.2019.1620736
M. Kohga, R. Togashi, H. Tsutiya and Y. Ota, Combust. Flame, 246, 112459 (2022); https://doi.org/10.1016/j.combustflame.2022.112459
Y.J. Yoo, Hwahak Konghak, 25, 442 (1987).
Z. Ma, F. Li and H. Bai, Propell. Explos. Pyrot., 31, 447 (2006); https://doi.org/10.1002/prep.200600060
Y. Wang, X. Xia, J. Zhu, Y. Li, X. Wang and X. Hu, Combust. Sci. Technol., 183, 154 (2010); https://doi.org/10.1080/00102202.2010.507561
W. Pang, L.T. De Luca, X. Fan, F. Maggi, H. Xu, W. Xie and X. Shi, Combust. Sci. Technol., (2015); https://doi.org/10.1080/00102202.2015.1083986
A.R. Demko, C.A. Dillier, G.R. Morrow, T. Sammet, K. Grossman, S. Seal and E.L. Petersen, Laboratory-Scale Burning of Composite Solid Propellant using in-situ Synthesized Iron Oxide, 52nd AIAA/SAE/ASEE Joint Propulsion Conference - Salt Lake City, UT July 25-27, (2016); https://doi.org/10.2514/6.2016-5115
G. Marothiya, C. Vijay, K. Ishitha and P.A. Ramakrishna, Combust. Flame, 182, 114 (2017); https://doi.org/10.1016/j.combustflame.2017.04.010
A.S. Budhwar, G. Aashish, P.V. More, P.C. Shekhar, B. Shaibal and P.K. Khanna, Vacuum, 156, 483 (2018); https://doi.org/10.1016/j.vacuum.2018.08.013
F. Maggi, S. Dossi, C. Paravan, L. Galfetti, R. Rota, S. Cianfanelli, G. Marra, Acta Astronaut., 158, 416 (2018); https://doi.org/10.1016/j.actaastro.2018.07.037
R. Sangtyani, H.S. Saha, A. Kumar, A. Kumar, M. Gupta and P.V. Chavan, Combust. Flame, 209, 357 (2019); https://doi.org/10.1016/j.combustflame.2019.04.054
J. Liu, H. Yu, L. Wang, S.Z. Vatsadze, Z. Huang and B.U. Amin, J. Organomet. Chem., 980–981, 122514 (2022); https://doi.org/10.1016/j.jorganchem.2022.122514