Copyright (c) 2023 Asha P K
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Spectroscopic Approach on Permanganate Oxidation of 1-[(4-Chlorophenyl)methyl]piperidin-4-amine in Presence of Ruthenium(III) Catalyst with DFT Analysis on Reaction Mechanism Pathway
Corresponding Author(s) : P.K. Asha
Asian Journal of Chemistry,
Vol. 35 No. 12 (2023): Vol 35 Issue 12, 2023
Abstract
The kinetic oxidation of 1-[(4-chlorophenyl)methyl]piperidin-4-amine (CMP) using alkaline potassium permanganate in presence of Ru(III) as catalyst was conducted spectrophotometrically at 303 K. The Pseudo first-order reaction was maintained with regard to oxidant and substrate during the reaction at an ionic strength of 0.01 mol dm-3. The first-order kinetics has been depicted with respect to catalyst Ru(III) chloride and less than unit order with substrate and medium. For the slow step, different activation parameters including ΔH# (kJ mol-1), Ea (kJ mol-1), ΔG# (kJ mol-1) and ΔS# (J K-1 mol-1) were calculated. The effect of temperature, variation of substrate concentration, oxidant, ionic strength were studied. The stoichiometry ratio of the reaction to the substrate and oxidizing agent was found to be 1:4. The products of reaction were isolated and identified as chlorobenzene and L-alanine, N-(2-aminomethylethyl)-carboxylic acid by LC-MS spectra, a suitable mechanism has been proposed and the rate laws are derived. The frontier molecular orbital (FMO) and frontier electron density (FED) of piperidiamine and the oxidative products were studied using density functional theory (DFT). The results of the theoretical calculations supported the suggested reaction pathways.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.C. Day and J. Selbin, Theoretical Inorganic Chemistry. Reinhold Publishing Corporation, New York, 344 (1985).
- M.J. Insausti, F. Mata-PÉRez and M.P. Alvarez-Macho, Int. J. Chem. Kinet., 27, 507 (1995); https://doi.org/10.1002/kin.550270509
- G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang, X. Cao, X. Zheng, A. Pan and S. Liang, Adv. Funct. Mater., 29, 1808375 (2019); https://doi.org/10.1002/adfm.201808375
- L.I. Simandi, M. Jaky, C.R. Savage and Z.A. Schelly, J. Am. Chem. Soc., 107, 4220 (1985); https://doi.org/10.1021/ja00300a023
- S. Nadimpalli, R. Rallabandi and L.S. Dikshitulu, Transition Met. Chem., 18, 510 (1993); https://doi.org/10.1007/BF00136616
- S.A. Farokhi and S.T. Nandibewoor, J. Indian Chem. Soc., 93, 427 (2016).
- A.A.P. Khan, A. Mohd, S. Bano, A. Husain and K.S. Siddiqi, Transition Met. Chem., 35, 117 (2010); https://doi.org/10.1007/s11243-009-9303-z
- P.N. Naik, S.A. Chimatadar and S.T. Nandibewoor, Ind. Eng. Chem. Res., 48, 2548 (2009); https://doi.org/10.1021/ie801633t
- D. Laloo and M.K. Mahanti, J. Phys. Org. Chem., 3, 799 (1990); https://doi.org/10.1002/poc.610031205
- V.K. Sharma and N.J. Graham, Ozone Sci. Eng., 32, 81 (2010); https://doi.org/10.1080/01919510903510507
- R.M. Mulla, G.C. Hiremath and S.T. Nandibewoor, J. Chem. Sci., 117, 33 (2005); https://doi.org/10.1007/BF02704359
- L. Jean, I. Baglin, J. Rouden, J. Maddaluno and M.-C. Lasne, Tetrahedron Lett., 42, 5645 (2001); https://doi.org/10.1016/S0040-4039(01)00985-6
- M. Manish, M.S. Suraj, M.S. Ramesh, G. Vidyasagar and S. Birendra, J. Chem. Pharm. Res., 3, 766 (2011).
- D. Manetti, E. Martini, C. Ghelardini, S. Dei, N. Galeotti, L. Guandalini, M.N. Romanelli, S. Scapecchi, E. Teodori, A. Bartolini and F. Gualtieri, Bioorg. Med. Chem. Lett., 13, 2303 (2003); https://doi.org/10.1016/S0960-894X(03)00437-2
- M.S.R. Gangireddy, M. Mantipally, V.N. Badavath, V.C. Maddipati, K. Paidikondala, N.K. Katari and R. Gundla, Chem. Data Coll., 32, 100646 (2021); https://doi.org/10.1016/j.cdc.2021.100646
- H.V. Rajeshwari, A.P. Savanur, S.T. Nandibewoor and S.A. Chimatadar, J. Indian Chem. Soc., 87, 295 (2010).
- A.K. Singh, B. Jain, R. Negi, Y. Katre, S.P. Singh and V.K. Sharma, Transition Met. Chem., 35, 407 (2010); https://doi.org/10.1007/s11243-010-9342-5
- L. Jattinagoudar, S. Nandibewoor and S. Chimatadar, J. Solution Chem., 45, 497 (2016); https://doi.org/10.1007/s10953-016-0455-0
- J. Scherzer and L.B. Clapp, J. Inorg. Nucl. Chem., 30, 1107 (1968); https://doi.org/10.1016/0022-1902(68)80331-8
- E.B. Elkaeed, R.G. Yousef, H. Elkady, I.M. Gobaara, B.A. Alsfouk, D.Z. Husein, I.M. Ibrahim, A.M. Metwaly and I.H. Eissa, Molecules, 27, 4606 (2022); https://doi.org/10.3390/molecules27144606
- K.S. Ravindra, V.A. Shastry, S. Shashidhar and M. Kumar, Physical Chem. Res., 11, 865 (2023); https://doi.org/10.22036/PCR.2022.361486.2191
- M.D. Meti, M.H. Lamani, A.G. Naikar, S.S. Sutar, S.T. Nandibewoor and S.A. Chimatadar, Monatsh. Chem., 146, 1485 (2015); https://doi.org/10.1007/s00706-015-1410-2
- M. Patgar, S. Nandibewoor and C. Shivamurti, Phys. Chem. Commun., 3, 52 (2016).
- P.A. Magdum, A.M. Bagoji and S.T. Nandibewoor, J. Phys. Org. Chem., 28, 743 (2015); https://doi.org/10.1002/poc.3478
- S.B. Konnur and S.T. Nandibewoor, Russ. J. Phys. Chem. A. Focus Chem., 93, 1686 (2019); https://doi.org/10.1134/S003602441909022X
- T. Wang and D.Z. Husein, Environ. Sci. Pollut. Res. Int., 30, 8928 (2022); https://doi.org/10.1007/s11356-022-20050-2
- M.S. Taghour, H. Elkady, W.M. Eldehna, N. El-Deeb, A.M. Kenawy, E.B. Elkaeed, B.A. Alsfouk, M.S. Alesawy, D.Z. Husein, A.M. Metwaly and I.H. Eissa, PLoS One, 17, e0272362 (2022); https://doi.org/10.1371/journal.pone.0272362
- D.Z. Husein, R. Hassanien and M. Khamis, RSC Adv., 11, 27027 (2021); https://doi.org/10.1039/D1RA04754J
- E.B. Elkaeed, R.G. Yousef, H. Elkady, A.A. Alsfouk, D.Z. Husein, I.M. Ibrahim, M. Alswah, H.S. Elzahabi, A.M. Metwaly and I.H. Eissa, Processes, 10, 2290 (2022); https://doi.org/10.3390/pr10112290
- R.G. Yousef, H. Elkady, E.B. Elkaeed, I.M. Gobaara, H.A. Al-Ghulikah, D.Z. Husein, I.M. Ibrahim, A.M. Metwaly and I.H. Eissa, Molecules, 27, 7719 (2022); https://doi.org/10.3390/molecules27227719
References
M.C. Day and J. Selbin, Theoretical Inorganic Chemistry. Reinhold Publishing Corporation, New York, 344 (1985).
M.J. Insausti, F. Mata-PÉRez and M.P. Alvarez-Macho, Int. J. Chem. Kinet., 27, 507 (1995); https://doi.org/10.1002/kin.550270509
G. Fang, C. Zhu, M. Chen, J. Zhou, B. Tang, X. Cao, X. Zheng, A. Pan and S. Liang, Adv. Funct. Mater., 29, 1808375 (2019); https://doi.org/10.1002/adfm.201808375
L.I. Simandi, M. Jaky, C.R. Savage and Z.A. Schelly, J. Am. Chem. Soc., 107, 4220 (1985); https://doi.org/10.1021/ja00300a023
S. Nadimpalli, R. Rallabandi and L.S. Dikshitulu, Transition Met. Chem., 18, 510 (1993); https://doi.org/10.1007/BF00136616
S.A. Farokhi and S.T. Nandibewoor, J. Indian Chem. Soc., 93, 427 (2016).
A.A.P. Khan, A. Mohd, S. Bano, A. Husain and K.S. Siddiqi, Transition Met. Chem., 35, 117 (2010); https://doi.org/10.1007/s11243-009-9303-z
P.N. Naik, S.A. Chimatadar and S.T. Nandibewoor, Ind. Eng. Chem. Res., 48, 2548 (2009); https://doi.org/10.1021/ie801633t
D. Laloo and M.K. Mahanti, J. Phys. Org. Chem., 3, 799 (1990); https://doi.org/10.1002/poc.610031205
V.K. Sharma and N.J. Graham, Ozone Sci. Eng., 32, 81 (2010); https://doi.org/10.1080/01919510903510507
R.M. Mulla, G.C. Hiremath and S.T. Nandibewoor, J. Chem. Sci., 117, 33 (2005); https://doi.org/10.1007/BF02704359
L. Jean, I. Baglin, J. Rouden, J. Maddaluno and M.-C. Lasne, Tetrahedron Lett., 42, 5645 (2001); https://doi.org/10.1016/S0040-4039(01)00985-6
M. Manish, M.S. Suraj, M.S. Ramesh, G. Vidyasagar and S. Birendra, J. Chem. Pharm. Res., 3, 766 (2011).
D. Manetti, E. Martini, C. Ghelardini, S. Dei, N. Galeotti, L. Guandalini, M.N. Romanelli, S. Scapecchi, E. Teodori, A. Bartolini and F. Gualtieri, Bioorg. Med. Chem. Lett., 13, 2303 (2003); https://doi.org/10.1016/S0960-894X(03)00437-2
M.S.R. Gangireddy, M. Mantipally, V.N. Badavath, V.C. Maddipati, K. Paidikondala, N.K. Katari and R. Gundla, Chem. Data Coll., 32, 100646 (2021); https://doi.org/10.1016/j.cdc.2021.100646
H.V. Rajeshwari, A.P. Savanur, S.T. Nandibewoor and S.A. Chimatadar, J. Indian Chem. Soc., 87, 295 (2010).
A.K. Singh, B. Jain, R. Negi, Y. Katre, S.P. Singh and V.K. Sharma, Transition Met. Chem., 35, 407 (2010); https://doi.org/10.1007/s11243-010-9342-5
L. Jattinagoudar, S. Nandibewoor and S. Chimatadar, J. Solution Chem., 45, 497 (2016); https://doi.org/10.1007/s10953-016-0455-0
J. Scherzer and L.B. Clapp, J. Inorg. Nucl. Chem., 30, 1107 (1968); https://doi.org/10.1016/0022-1902(68)80331-8
E.B. Elkaeed, R.G. Yousef, H. Elkady, I.M. Gobaara, B.A. Alsfouk, D.Z. Husein, I.M. Ibrahim, A.M. Metwaly and I.H. Eissa, Molecules, 27, 4606 (2022); https://doi.org/10.3390/molecules27144606
K.S. Ravindra, V.A. Shastry, S. Shashidhar and M. Kumar, Physical Chem. Res., 11, 865 (2023); https://doi.org/10.22036/PCR.2022.361486.2191
M.D. Meti, M.H. Lamani, A.G. Naikar, S.S. Sutar, S.T. Nandibewoor and S.A. Chimatadar, Monatsh. Chem., 146, 1485 (2015); https://doi.org/10.1007/s00706-015-1410-2
M. Patgar, S. Nandibewoor and C. Shivamurti, Phys. Chem. Commun., 3, 52 (2016).
P.A. Magdum, A.M. Bagoji and S.T. Nandibewoor, J. Phys. Org. Chem., 28, 743 (2015); https://doi.org/10.1002/poc.3478
S.B. Konnur and S.T. Nandibewoor, Russ. J. Phys. Chem. A. Focus Chem., 93, 1686 (2019); https://doi.org/10.1134/S003602441909022X
T. Wang and D.Z. Husein, Environ. Sci. Pollut. Res. Int., 30, 8928 (2022); https://doi.org/10.1007/s11356-022-20050-2
M.S. Taghour, H. Elkady, W.M. Eldehna, N. El-Deeb, A.M. Kenawy, E.B. Elkaeed, B.A. Alsfouk, M.S. Alesawy, D.Z. Husein, A.M. Metwaly and I.H. Eissa, PLoS One, 17, e0272362 (2022); https://doi.org/10.1371/journal.pone.0272362
D.Z. Husein, R. Hassanien and M. Khamis, RSC Adv., 11, 27027 (2021); https://doi.org/10.1039/D1RA04754J
E.B. Elkaeed, R.G. Yousef, H. Elkady, A.A. Alsfouk, D.Z. Husein, I.M. Ibrahim, M. Alswah, H.S. Elzahabi, A.M. Metwaly and I.H. Eissa, Processes, 10, 2290 (2022); https://doi.org/10.3390/pr10112290
R.G. Yousef, H. Elkady, E.B. Elkaeed, I.M. Gobaara, H.A. Al-Ghulikah, D.Z. Husein, I.M. Ibrahim, A.M. Metwaly and I.H. Eissa, Molecules, 27, 7719 (2022); https://doi.org/10.3390/molecules27227719