Copyright (c) 2023 Arti Jangra, Ramesh Kumar, Jai Kumar, Jaiveer Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption of Antibiotic Drug on the Surface of Humic Acid Modified Magnetite Nanoparticles: Kinetics, Isotherm and Thermodynamic Studies
Corresponding Author(s) : Ramesh Kumar
Asian Journal of Chemistry,
Vol. 35 No. 12 (2023): Vol 35 Issue 12, 2023
Abstract
The present study reports the synthesis of humic acid-modified magnetite nanoparticles for adsorption behaviour towards the ofloxacin drug. Several analytical and spectroscopic techniques were used to characterize the synthesized surface modified magnetite nanoparticles. In order to determine the highest possible adsorption capacity of these coated nanoparticles, the effects of various influencing variables such as pH of the solution, contact time, initial concentration of adsorbate solution, amount of adsorbent and temperature were also investigated using batch adsorption method. Adsorption isotherm and kinetic analysis for the adsorption of ofloxacin drug from aqueous solution were studied simultaneously. The kinetics and isotherm studies demonstrated good agreement with the pseudo-second-order kinetics model and Langmuir model of isotherm, respectively. Thermodynamic analysis of the adsorption of ofloxacin on the surface of humic acid modified magnetite nanoparticles displayed negative values of Gibb’s free energy change, positive values of enthalpy as well as entropy change, resulting that the adsorption process was spontaneous and endothermic in nature. A comparative study of percentage drug removal efficiency of humic acid functionalized magnetite nanoparticles with the reported adsorbents has also been reported. This study revealed that the humic acid-modified magnetite nanoparticles showed remarkable adsorption capacity and thus could be used as an effective adsorbent for the removal of ofloxacin from aqueous solution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D. Fatta-Kassinos, S. Meric and A. Nikolaou, Anal. Bioanal. Chem., 399, 251 (2011); https://doi.org/10.1007/s00216-010-4300-9
- M. Bilal, S. Mehmood, T. Rasheed and H.M.N. Iqbal, Curr. Opin. Environ. Sci. Health, 13, 68 (2020); https://doi.org/10.1016/j.coesh.2019.11.005
- T. Mackulak, S. Cernanský, M. Fehér, L. Birošová and M. Gál, Curr. Opin. Environ. Sci. Health, 9, 40 (2019); https://doi.org/10.1016/j.coesh.2019.04.002
- B. Ebrahimpour, Y. Yamini and M. Moradi, J. Pharm. Biomed. Anal., 66, 264 (2012); https://doi.org/10.1016/j.jpba.2012.03.028
- H. Titouhi and J.E. Belgaied, J. Environ. Sci., 45, 84 (2016); https://doi.org/10.1016/j.jes.2015.12.017
- M. Mezzelani, S. Gorbi and F. Regoli, Mar. Environ. Res., 140, 41 (2018); https://doi.org/10.1016/j.marenvres.2018.05.001
- X. Zhang, J. Li, S. Yan, R.D. Tyagi and J. Chen, Physical, Chemical, and Biological Impact (Hazard) of Hospital Wastewater on Environ-ment: Presence of Pharmaceuticals, Pathogens and Antibiotic-resistance Genes; In: Current Developments in Biotechnology and Bioengineering, Elsevier, pp. 79–102 (2020); https://doi.org/10.1016/B978-0-12-819722-6.00003-1
- A. Khadir, A. Mollahosseini, R.M.A. Tehrani and M. Negarestani, A Review on Pharmaceutical Removal from Aquatic Media by Adsorption: Understanding the Influential Parameters and Novel Adsorbents, In: Sustainable Green Chemical Processes and their Allied Applications. Nanotechnology in the Life Sciences, eds.: A. Inamuddin, Springer, Cham., Nanotechnol. Life Sci., 207 (2020); https://doi.org/10.1007/978-3-030-42284-4_8
- H. Farzaneh, K. Loganathan, J. Saththasivam and G. McKay, Sci. Total Environ., 765, 142704 (2021); https://doi.org/10.1016/j.scitotenv.2020.142704
- A. Javaid, S. Latif, M. Imran, N. Hussain, M.S.R. Rajoka, H.M.N. Iqbal and M. Bilal, Chemosphere, 291, 133056 (2022); https://doi.org/10.1016/j.chemosphere.2021.133056
- H. Wu, Y. Shi, X. Guo, S. Zhao, J. Du, H. Jia, L. He and L. Du, J. Sep. Sci., 39, 4398 (2016); https://doi.org/10.1002/jssc.201600631
- Z. Li, H. Hong, L. Liao, C.J. Ackley, L.A. Schulz, R.A. MacDonald, A.L. Mihelich and S.M. Emard, Colloids Surf. B Biointerfaces, 88, 339 (2011); https://doi.org/10.1016/j.colsurfb.2011.07.011
- P. Kundu, A. Kaur, S.K. Mehta and S.K. Kansal, J. Nanosci. Nanotechnol., 14, 6991 (2014); https://doi.org/10.1166/jnn.2014.9238
- M.E. Peñafiel, J.M. Matesanz, E. Vanegas, D. Bermejo, R. Mosteo and M.P. Ormad, Sci. Total Environ., 750, 141498 (2021); https://doi.org/10.1016/j.scitotenv.2020.141498
- S.H. Huang and R.S. Juang, J. Nanopart. Res., 13, 4411 (2011); https://doi.org/10.1007/s11051-011-0551-4
- N. Elahi and M. Rizwan, Artif. Organs, 45, 1272 (2021); https://doi.org/10.1111/aor.14027
- A. Parashar, S. Sikarwar and R. Jain, Int. J. Environ. Anal. Chem., 102, 117 (2022); https://doi.org/10.1080/03067319.2020.1716977
- A. Jangra, J. Singh, J. Kumar, K. Rani and R. Kumar, Indian J. Biochem. Biophys., 59, 892 (2022); https://doi.org/10.56042/ijbb.v59i9.59916
- A. Jangra, J. Singh, R. Khanna, P. Kumar, S. Kumar and R. Kumar, Asian J. Chem., 33, 3031 (2021); https://doi.org/10.14233/ajchem.2021.23471
- A. Jangra, J. Kumar, D. Singh, H. Kumar, P. Kumar, S. Kumar and R. Kumar, Water Sci. Technol., 86, 3028 (2022); https://doi.org/10.2166/wst.2022.379
- A. Jangra, S. Kumar, J. Singh, J. Kumar, K. Rani, P. Kumar, D. Singh and R. Kumar, Biointerface Res. Appl. Chem., 13, 1 (2023); https://doi.org/10.33263/BRIAC135.480
- N. Ghosh, S. Sen, G. Biswas, A. Saxena and P.K. Haldar, Water Air Soil Pollut., 234, 202 (2023); https://doi.org/10.1007/s11270-023-06217-8
- F. Golmohammadi, M. Hazrati and M. Safari, Microchem. J., 144, 64 (2019); https://doi.org/10.1016/j.microc.2018.08.057
- I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
- X. Weng, W. Cai, G. Owens and Z. Chen, J. Clean. Prod., 319, 128734 (2021); https://doi.org/10.1016/j.jclepro.2021.128734
- H. Freundlich, Z. Phys. Chem., 57U, 385 (1907); https://doi.org/10.1515/zpch-1907-5723
- A.V. Samrot, H.H. Ali, J. Selvarani A, E. Faradjeva, R. P, P. P and S. Kumar S, Curr. Res. Green Sustain. Chem., 4, 100066 (2021); https://doi.org/10.1016/j.crgsc.2021.100066
- V. Temkin and M.J. Pyzhev, Acta Physicochim. URSS, 12, 217 (1940).
- K.L. Tan and B.H. Hameed, J. Taiwan Inst. Chem. Eng., 74, 25 (2017); https://doi.org/10.1016/j.jtice.2017.01.024
- S. Lagergren, Kungliga Svenska Vetenskap. Handlingar, 24, 1 (1898).
- Y.S. Ho and G. McKay, Process Biochem., 34, 451 (1999); https://doi.org/10.1016/S0032-9592(98)00112-5
- Z. Jeirani, C.H. Niu and J. Soltan, Rev. Chem. Eng., 33, 491 (2017); https://doi.org/10.1515/revce-2016-0027
- L.E. Vîjan, Optoelectron. Adv. Mater. Rapid Commun., 3, 60 (2009).
- J. Singh, A. Jangra, K. Rani, P. Kumar, S. Kumar and R. Kumar, Asian J. Chem., 33, 2675 (2021); https://doi.org/10.14233/ajchem.2021.23377
- A.H. Birniwa, A.S. Abubakar, H.N.M.E. Mahmud, S.R.M. Kutty, A.H. Jagaba, S.S. Abdullahi and Z.U. Zango, Application of Agricultural Wastes for Cationic Dyes Removal from Wastewater, In: Textile Waste-water Treatment. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry, S.S. Muthu and A. Khadir, Eds. Springer: Singapore, pp. 239-274 (2022); https://doi.org/10.1007/978-981-19-2832-1_9
- M.C. Ncibi and M. Sillanpää, J. Hazard. Mater., 298, 102 (2015); https://doi.org/10.1016/j.jhazmat.2015.05.025
- A.M. Aljeboree and A.F. Alkaim, J. Phys. Conf. Ser., 1294, 052059 (2019); https://doi.org/10.1088/1742-6596/1294/5/052059
- A. Thakur, N. Sharma and A. Mann, Mater. Today Proc., 28, 1514 (2020); https://doi.org/10.1016/j.matpr.2020.04.833
- S.A. Hassan and F.J. Ali, Int. J. Adv. Sci. Technol. Res., 2, 950 (2014).
- A. Jaswal, M. Kaur, S. Singh, S.K. Kansal, A. Umar, C.S. Garoufalis and S. Baskoutas, J. Hazard. Mater., 417, 125982 (2021); https://doi.org/10.1016/j.jhazmat.2021.125982
- P. Tavassoli, E. Bazrafshan, F.K. Mostafapour, Z. Maghsoodi, D. Balarak, H. Kamani and A.A. Zarei, J. Mazandaran Univ. Med. Sci., 27, 116 (2018) (In Persian).
- R.A. Wuana, R. Sha’Ato and S. Iorhen, Adv. Environ. Res., 4, 49 (2015); https://doi.org/10.12989/aer.2015.4.1.049
- J. Zhao, G. Liang, X. Zhang, X. Cai, R. Li, X. Xie and Z. Wang, Sci. Total Environ., 688, 1205 (2019); https://doi.org/10.1016/j.scitotenv.2019.06.287
- S.T. Danalioglu, S.S. Bayazit, Ö. Kerkez, B.G. Alhogbi and M. Abdel Salam, Chem. Eng. Res. Des., 123, 259 (2017); https://doi.org/10.1016/j.cherd.2017.05.018
- M.Z. Afzal, R. Yue, X.F. Sun, C. Song and S.G. Wang, J. Colloid Interface Sci., 543, 76 (2019); https://doi.org/10.1016/j.jcis.2019.01.083
- C. Yan, L. Fan, Y. Chen and Y. Xiong, Colloids Surf. A Physicochem. Eng. Asp., 602, 125135 (2020); https://doi.org/10.1016/j.colsurfa.2020.125135
- D. Xie, H. Zhang, M. Jiang, H. Huang, H. Zhang, Y. Liao and S. Zhao, Chin. J. Chem. Eng., 28, 2689 (2020); https://doi.org/10.1016/j.cjche.2020.06.039
References
D. Fatta-Kassinos, S. Meric and A. Nikolaou, Anal. Bioanal. Chem., 399, 251 (2011); https://doi.org/10.1007/s00216-010-4300-9
M. Bilal, S. Mehmood, T. Rasheed and H.M.N. Iqbal, Curr. Opin. Environ. Sci. Health, 13, 68 (2020); https://doi.org/10.1016/j.coesh.2019.11.005
T. Mackulak, S. Cernanský, M. Fehér, L. Birošová and M. Gál, Curr. Opin. Environ. Sci. Health, 9, 40 (2019); https://doi.org/10.1016/j.coesh.2019.04.002
B. Ebrahimpour, Y. Yamini and M. Moradi, J. Pharm. Biomed. Anal., 66, 264 (2012); https://doi.org/10.1016/j.jpba.2012.03.028
H. Titouhi and J.E. Belgaied, J. Environ. Sci., 45, 84 (2016); https://doi.org/10.1016/j.jes.2015.12.017
M. Mezzelani, S. Gorbi and F. Regoli, Mar. Environ. Res., 140, 41 (2018); https://doi.org/10.1016/j.marenvres.2018.05.001
X. Zhang, J. Li, S. Yan, R.D. Tyagi and J. Chen, Physical, Chemical, and Biological Impact (Hazard) of Hospital Wastewater on Environ-ment: Presence of Pharmaceuticals, Pathogens and Antibiotic-resistance Genes; In: Current Developments in Biotechnology and Bioengineering, Elsevier, pp. 79–102 (2020); https://doi.org/10.1016/B978-0-12-819722-6.00003-1
A. Khadir, A. Mollahosseini, R.M.A. Tehrani and M. Negarestani, A Review on Pharmaceutical Removal from Aquatic Media by Adsorption: Understanding the Influential Parameters and Novel Adsorbents, In: Sustainable Green Chemical Processes and their Allied Applications. Nanotechnology in the Life Sciences, eds.: A. Inamuddin, Springer, Cham., Nanotechnol. Life Sci., 207 (2020); https://doi.org/10.1007/978-3-030-42284-4_8
H. Farzaneh, K. Loganathan, J. Saththasivam and G. McKay, Sci. Total Environ., 765, 142704 (2021); https://doi.org/10.1016/j.scitotenv.2020.142704
A. Javaid, S. Latif, M. Imran, N. Hussain, M.S.R. Rajoka, H.M.N. Iqbal and M. Bilal, Chemosphere, 291, 133056 (2022); https://doi.org/10.1016/j.chemosphere.2021.133056
H. Wu, Y. Shi, X. Guo, S. Zhao, J. Du, H. Jia, L. He and L. Du, J. Sep. Sci., 39, 4398 (2016); https://doi.org/10.1002/jssc.201600631
Z. Li, H. Hong, L. Liao, C.J. Ackley, L.A. Schulz, R.A. MacDonald, A.L. Mihelich and S.M. Emard, Colloids Surf. B Biointerfaces, 88, 339 (2011); https://doi.org/10.1016/j.colsurfb.2011.07.011
P. Kundu, A. Kaur, S.K. Mehta and S.K. Kansal, J. Nanosci. Nanotechnol., 14, 6991 (2014); https://doi.org/10.1166/jnn.2014.9238
M.E. Peñafiel, J.M. Matesanz, E. Vanegas, D. Bermejo, R. Mosteo and M.P. Ormad, Sci. Total Environ., 750, 141498 (2021); https://doi.org/10.1016/j.scitotenv.2020.141498
S.H. Huang and R.S. Juang, J. Nanopart. Res., 13, 4411 (2011); https://doi.org/10.1007/s11051-011-0551-4
N. Elahi and M. Rizwan, Artif. Organs, 45, 1272 (2021); https://doi.org/10.1111/aor.14027
A. Parashar, S. Sikarwar and R. Jain, Int. J. Environ. Anal. Chem., 102, 117 (2022); https://doi.org/10.1080/03067319.2020.1716977
A. Jangra, J. Singh, J. Kumar, K. Rani and R. Kumar, Indian J. Biochem. Biophys., 59, 892 (2022); https://doi.org/10.56042/ijbb.v59i9.59916
A. Jangra, J. Singh, R. Khanna, P. Kumar, S. Kumar and R. Kumar, Asian J. Chem., 33, 3031 (2021); https://doi.org/10.14233/ajchem.2021.23471
A. Jangra, J. Kumar, D. Singh, H. Kumar, P. Kumar, S. Kumar and R. Kumar, Water Sci. Technol., 86, 3028 (2022); https://doi.org/10.2166/wst.2022.379
A. Jangra, S. Kumar, J. Singh, J. Kumar, K. Rani, P. Kumar, D. Singh and R. Kumar, Biointerface Res. Appl. Chem., 13, 1 (2023); https://doi.org/10.33263/BRIAC135.480
N. Ghosh, S. Sen, G. Biswas, A. Saxena and P.K. Haldar, Water Air Soil Pollut., 234, 202 (2023); https://doi.org/10.1007/s11270-023-06217-8
F. Golmohammadi, M. Hazrati and M. Safari, Microchem. J., 144, 64 (2019); https://doi.org/10.1016/j.microc.2018.08.057
I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918); https://doi.org/10.1021/ja02242a004
X. Weng, W. Cai, G. Owens and Z. Chen, J. Clean. Prod., 319, 128734 (2021); https://doi.org/10.1016/j.jclepro.2021.128734
H. Freundlich, Z. Phys. Chem., 57U, 385 (1907); https://doi.org/10.1515/zpch-1907-5723
A.V. Samrot, H.H. Ali, J. Selvarani A, E. Faradjeva, R. P, P. P and S. Kumar S, Curr. Res. Green Sustain. Chem., 4, 100066 (2021); https://doi.org/10.1016/j.crgsc.2021.100066
V. Temkin and M.J. Pyzhev, Acta Physicochim. URSS, 12, 217 (1940).
K.L. Tan and B.H. Hameed, J. Taiwan Inst. Chem. Eng., 74, 25 (2017); https://doi.org/10.1016/j.jtice.2017.01.024
S. Lagergren, Kungliga Svenska Vetenskap. Handlingar, 24, 1 (1898).
Y.S. Ho and G. McKay, Process Biochem., 34, 451 (1999); https://doi.org/10.1016/S0032-9592(98)00112-5
Z. Jeirani, C.H. Niu and J. Soltan, Rev. Chem. Eng., 33, 491 (2017); https://doi.org/10.1515/revce-2016-0027
L.E. Vîjan, Optoelectron. Adv. Mater. Rapid Commun., 3, 60 (2009).
J. Singh, A. Jangra, K. Rani, P. Kumar, S. Kumar and R. Kumar, Asian J. Chem., 33, 2675 (2021); https://doi.org/10.14233/ajchem.2021.23377
A.H. Birniwa, A.S. Abubakar, H.N.M.E. Mahmud, S.R.M. Kutty, A.H. Jagaba, S.S. Abdullahi and Z.U. Zango, Application of Agricultural Wastes for Cationic Dyes Removal from Wastewater, In: Textile Waste-water Treatment. Sustainable Textiles: Production, Processing, Manufacturing & Chemistry, S.S. Muthu and A. Khadir, Eds. Springer: Singapore, pp. 239-274 (2022); https://doi.org/10.1007/978-981-19-2832-1_9
M.C. Ncibi and M. Sillanpää, J. Hazard. Mater., 298, 102 (2015); https://doi.org/10.1016/j.jhazmat.2015.05.025
A.M. Aljeboree and A.F. Alkaim, J. Phys. Conf. Ser., 1294, 052059 (2019); https://doi.org/10.1088/1742-6596/1294/5/052059
A. Thakur, N. Sharma and A. Mann, Mater. Today Proc., 28, 1514 (2020); https://doi.org/10.1016/j.matpr.2020.04.833
S.A. Hassan and F.J. Ali, Int. J. Adv. Sci. Technol. Res., 2, 950 (2014).
A. Jaswal, M. Kaur, S. Singh, S.K. Kansal, A. Umar, C.S. Garoufalis and S. Baskoutas, J. Hazard. Mater., 417, 125982 (2021); https://doi.org/10.1016/j.jhazmat.2021.125982
P. Tavassoli, E. Bazrafshan, F.K. Mostafapour, Z. Maghsoodi, D. Balarak, H. Kamani and A.A. Zarei, J. Mazandaran Univ. Med. Sci., 27, 116 (2018) (In Persian).
R.A. Wuana, R. Sha’Ato and S. Iorhen, Adv. Environ. Res., 4, 49 (2015); https://doi.org/10.12989/aer.2015.4.1.049
J. Zhao, G. Liang, X. Zhang, X. Cai, R. Li, X. Xie and Z. Wang, Sci. Total Environ., 688, 1205 (2019); https://doi.org/10.1016/j.scitotenv.2019.06.287
S.T. Danalioglu, S.S. Bayazit, Ö. Kerkez, B.G. Alhogbi and M. Abdel Salam, Chem. Eng. Res. Des., 123, 259 (2017); https://doi.org/10.1016/j.cherd.2017.05.018
M.Z. Afzal, R. Yue, X.F. Sun, C. Song and S.G. Wang, J. Colloid Interface Sci., 543, 76 (2019); https://doi.org/10.1016/j.jcis.2019.01.083
C. Yan, L. Fan, Y. Chen and Y. Xiong, Colloids Surf. A Physicochem. Eng. Asp., 602, 125135 (2020); https://doi.org/10.1016/j.colsurfa.2020.125135
D. Xie, H. Zhang, M. Jiang, H. Huang, H. Zhang, Y. Liao and S. Zhao, Chin. J. Chem. Eng., 28, 2689 (2020); https://doi.org/10.1016/j.cjche.2020.06.039