Copyright (c) 2023 Dr Qasim Ullah, NAHID FATEMA, VIJULITHA MANGA, ARIFUDDIN MOHAMMAD, SALMAN AHMAD KHAN, MOHAMMAD ARIF PATHAN
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green and Efficient Chemo-selective Synthesis of Chalcone Imines (α,β-Unsaturated imine) using Baker’s Yeast
Corresponding Author(s) : Qasim Ullah
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
A simple, efficient, chemo-selective and sustainable biocatalytic method for the synthesis of a,b-unsaturated imines or chalcone- mines (3a-l) was developed by using Baker’s yeast. When, chalcones (1a-b) were reacted with the substituted anilines (2a-f) in the presence of Baker’s yeast act as a whole cell biocatalyst at ambient temperature in ethanol as a green solvent to afford the a,b-unsaturated imines or chalcone-imines (3a-l) in good to excellent yield. The reaction procedure was easy to follow and takes place at room temperature (25-28 ºC). The commercially available Baker’s yeast is very cheap and affordable catalyst, easy to use and facilitate this method as an effective and facile chemo-selective synthesis of a,b-unsaturated imines (chalcone-imines) (3a-l). This is the first report about the biocatalytic reactions of a,b-unsaturated imines (chalcone-imines) (3a-l) formation and it is assumed that this method will open an gateway for the organic chemists to design and synthesized chemo-selective chalcone imines.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.A. Sheldon and J.M. Woodley, Chem. Rev., 118, 801 (2018); https://doi.org/10.1021/acs.chemrev.7b00203
- I.R. Shaikh, J. Catal., 2014, 402860 (2014); https://doi.org/10.1155/2014/402860
- B.M. Sahoo and B.K. Banik, Curr. Organocatal., 6, 158 (2019); https://doi.org/10.2174/2213337206666181211105304
- V.D. Silva, J.S. Carletto, E. Carasek, B.U. Stambuk and M.G. Nascimento, Process Biochem., 48, 1159 (2013); https://doi.org/10.1016/j.procbio.2013.05.010
- U. Hanefeld, L. Gardossi and E. Magner, Chem. Soc. Rev., 38, 453 (2009); https://doi.org/10.1039/B711564B
- Z. Rappoport, 2003. The Chemistry of Phenols. Wiley-VCH, Weinheim.
- C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan and R. Fernandez-Lafuente, Enzyme Microb. Technol., 40, 1451 (2007); https://doi.org/10.1016/j.enzmictec.2007.01.018
- S. Pakhomova, B. Gao, W.E. Boeglin, A.R. Brash and M.E. Newcomer, Protein Sci., 18, 2559 (2009); https://doi.org/10.1002/pro.265
- M.P. Pinheiro, N.S. Rios, T.S. Fonseca, F.A. Bezerra, E. Rodríguez-Castellón, R. Fernandez-Lafuente, M. Carlos de Mattos, J.C.S. dos Santos and L.R.B. Gonçalves, Biotechnol. Prog., 34, 878 (2018); https://doi.org/10.1002/btpr.2630
- G.V. Lima, M.R. da Silva, T. de Sousa Fonseca, L.B. de Lima, M.C.F. de Oliveira, T.L.G. de Lemos, D. Zampieri, J.C.S. dos Santos, N.S. Rios, L.R.B. Gonçalves, F. Molinari and M.C. de Mattos, Appl. Catal. A Gen., 546, 7 (2017); https://doi.org/10.1016/j.apcata.2017.08.003
- V.D. Silva, J.S. Carletto, E. Carasek, B.U. Stambuk and M.G. Nascimento, Process Biochem., 48, 1159 (2013); https://doi.org/10.1016/j.procbio.2013.05.010
- N.G. Singh, R. Nongrum, C. Kathing, J.W.S. Rani and R. Nongkhlaw, Green Chem. Lett. Rev., 7, 137 (2014); https://doi.org/10.1080/17518253.2014.902506
- S.F. Martin, Pure Appl. Chem., 81, 195 (2009); https://doi.org/10.1351/PAC-CON-08-07-03
- M. Shimizu, I. Hachiya and I. Mizota, Chem. Commun., 874 (2009); https://doi.org/10.1039/B814930E
- C. Sole and E. Fernandez, Chem. Asian J., 4, 1790 (2009); https://doi.org/10.1002/asia.200900311
- S.K. Saha, A. Bera, S. Singh and N.K. Rana, Eur. J. Org. Chem., 26, e202201470 (2023); https://doi.org/10.1002/ejoc.202201470
- Q. Jiang, T. Yang, Q. Li, G.-M. Liang, Y. Liu, C.-Y. He, W.-D. Chu and Q.-Z. Liu, Org. Lett., 25, 3184 (2023); https://doi.org/10.1021/acs.orglett.3c00192
- A.W. Raut, A.G. Doshi and P.B. Raghuwanshi, Orient. J. Chem., 14, (1998).
- H.A. Alwan and S.A. Aowda, J. Med. Chem. Sci., 6, 868 (2023); https://doi.org/10.26655/JMCHEMSCI.2023.4.18
- N. Guranova, P. Golubev, O. Bakulina, D. Dar’in, G. Kantin and M. Krasavin, Org. Biomol. Chem., 19, 3829 (2021); https://doi.org/10.1039/D1OB00534K
- K. Samreen, Q. Ullah, M. Arifuddin, S.A. Khan and A. Rehman, Results Chem., 5, 100839 (2023); https://doi.org/10.1016/j.rechem.2023.100839
- H.S. Lihumis and S.A. Aowda, Iraqi J. Sci., S2, 1 (2021); https://doi.org/10.24996/ijs.2021.SI.2.1
- A. Hoz, I. Alkorta and J. Elguero, Tetrahedron, 97, 132413 (2021); https://doi.org/10.1016/j.tet.2021.132413
- N.D. Jumbam and W. Masamba, Molecules, 25, 5935 (2020); https://doi.org/10.3390/molecules25245935
References
R.A. Sheldon and J.M. Woodley, Chem. Rev., 118, 801 (2018); https://doi.org/10.1021/acs.chemrev.7b00203
I.R. Shaikh, J. Catal., 2014, 402860 (2014); https://doi.org/10.1155/2014/402860
B.M. Sahoo and B.K. Banik, Curr. Organocatal., 6, 158 (2019); https://doi.org/10.2174/2213337206666181211105304
V.D. Silva, J.S. Carletto, E. Carasek, B.U. Stambuk and M.G. Nascimento, Process Biochem., 48, 1159 (2013); https://doi.org/10.1016/j.procbio.2013.05.010
U. Hanefeld, L. Gardossi and E. Magner, Chem. Soc. Rev., 38, 453 (2009); https://doi.org/10.1039/B711564B
Z. Rappoport, 2003. The Chemistry of Phenols. Wiley-VCH, Weinheim.
C. Mateo, J.M. Palomo, G. Fernandez-Lorente, J.M. Guisan and R. Fernandez-Lafuente, Enzyme Microb. Technol., 40, 1451 (2007); https://doi.org/10.1016/j.enzmictec.2007.01.018
S. Pakhomova, B. Gao, W.E. Boeglin, A.R. Brash and M.E. Newcomer, Protein Sci., 18, 2559 (2009); https://doi.org/10.1002/pro.265
M.P. Pinheiro, N.S. Rios, T.S. Fonseca, F.A. Bezerra, E. Rodríguez-Castellón, R. Fernandez-Lafuente, M. Carlos de Mattos, J.C.S. dos Santos and L.R.B. Gonçalves, Biotechnol. Prog., 34, 878 (2018); https://doi.org/10.1002/btpr.2630
G.V. Lima, M.R. da Silva, T. de Sousa Fonseca, L.B. de Lima, M.C.F. de Oliveira, T.L.G. de Lemos, D. Zampieri, J.C.S. dos Santos, N.S. Rios, L.R.B. Gonçalves, F. Molinari and M.C. de Mattos, Appl. Catal. A Gen., 546, 7 (2017); https://doi.org/10.1016/j.apcata.2017.08.003
V.D. Silva, J.S. Carletto, E. Carasek, B.U. Stambuk and M.G. Nascimento, Process Biochem., 48, 1159 (2013); https://doi.org/10.1016/j.procbio.2013.05.010
N.G. Singh, R. Nongrum, C. Kathing, J.W.S. Rani and R. Nongkhlaw, Green Chem. Lett. Rev., 7, 137 (2014); https://doi.org/10.1080/17518253.2014.902506
S.F. Martin, Pure Appl. Chem., 81, 195 (2009); https://doi.org/10.1351/PAC-CON-08-07-03
M. Shimizu, I. Hachiya and I. Mizota, Chem. Commun., 874 (2009); https://doi.org/10.1039/B814930E
C. Sole and E. Fernandez, Chem. Asian J., 4, 1790 (2009); https://doi.org/10.1002/asia.200900311
S.K. Saha, A. Bera, S. Singh and N.K. Rana, Eur. J. Org. Chem., 26, e202201470 (2023); https://doi.org/10.1002/ejoc.202201470
Q. Jiang, T. Yang, Q. Li, G.-M. Liang, Y. Liu, C.-Y. He, W.-D. Chu and Q.-Z. Liu, Org. Lett., 25, 3184 (2023); https://doi.org/10.1021/acs.orglett.3c00192
A.W. Raut, A.G. Doshi and P.B. Raghuwanshi, Orient. J. Chem., 14, (1998).
H.A. Alwan and S.A. Aowda, J. Med. Chem. Sci., 6, 868 (2023); https://doi.org/10.26655/JMCHEMSCI.2023.4.18
N. Guranova, P. Golubev, O. Bakulina, D. Dar’in, G. Kantin and M. Krasavin, Org. Biomol. Chem., 19, 3829 (2021); https://doi.org/10.1039/D1OB00534K
K. Samreen, Q. Ullah, M. Arifuddin, S.A. Khan and A. Rehman, Results Chem., 5, 100839 (2023); https://doi.org/10.1016/j.rechem.2023.100839
H.S. Lihumis and S.A. Aowda, Iraqi J. Sci., S2, 1 (2021); https://doi.org/10.24996/ijs.2021.SI.2.1
A. Hoz, I. Alkorta and J. Elguero, Tetrahedron, 97, 132413 (2021); https://doi.org/10.1016/j.tet.2021.132413
N.D. Jumbam and W. Masamba, Molecules, 25, 5935 (2020); https://doi.org/10.3390/molecules25245935