Copyright (c) 2023 Fahid Rabah, Mohammed Aldalou
This work is licensed under a Creative Commons Attribution 4.0 International License.
Production of Sodium Hypochlorite Water Disinfectant from Seawater Desalination Brine
Corresponding Author(s) : Mohammed Aldalou
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
he research explores the onsite generation (OSG) of sodium hypochlorite (NaOCl) from desalination brine in Gaza, Palestine. The process produces NaOCl as a valuable water disinfectant and contributes to marine environment protection and public health by reducing brine discharged to the sea. Batch experiments were used to examined the characteristics of producing NaOCl studying five factors viz. electrolysis time, current density, electrode type, electrode spacing and stability of the produced NaOCl. The highest NaOCl concentration was 2.17%, achieved with graphite electrodes 1.3 cm diameter, with 1cm electrodes spacing, 120 min electrolysis time, 180 mA/cm2 current density and 25 ± 2 ºC solution temperature. The NaOCl degradation rate was 1.8% and 10% daily when stored in dark places or exposed to direct sunlight, respectively. Thus, it is recommended to store NaOCl in dark places to minimize its degradation. The present study suggests the OSG of NaOCl as a promising alternative for brine management in Gaza and worldwide.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Al-Yaqubi, A. Aliewi and Z. Mimi, Water Int., 32, 219 (2007); https://doi.org/10.1080/02508060708692202
- Y. Mogheir and N.A. Bohissi, J. Environ. Prot., 6, 599 (2015); https://doi.org/10.4236/jep.2015.66054
- M.R. Al-Agha and R.S. Mortaja, Desalination, 173, 157 (2005); https://doi.org/10.1016/j.desal.2004.06.212
- S.N. Backer, I. Bouaziz, N. Kallayi, R.T. Thomas, G. Preethikumar, M.S. Takriff, T. Laoui and M.A. Atieh, Sustainability, 14, 6752 (2022); https://doi.org/10.3390/su14116752
- E. Chinello, S.M.H. Hashemi, D. Psaltis and C. Moser, J. Electrochem. Soc., 166, E336 (2019); https://doi.org/10.1149/2.0491912jes
- M. Saleem, M.H. Chakrabarti, D.B. Hasan, M.S. Islam, S.A. Hajimolana, R. Yussof, M.A. Hussain, G.M.A. Khan and B.S. Ali, Int. J. Electrochem. Sci., 7, 3929 (2012); https://doi.org/10.1016/S1452-3981(23)19510-1
- N. Al-Areqi, E. Alaghbari, R. Saif, M.A.N. Mahyoub, S.A.A. Hizam and H.H.A.S. Morshed, Int. J. Sci. Eng. Res., 12, 129 (2021).
- E. Chinello, M.A. Modestino, J.W. Schüttauf, L. Coulot, M. Ackermann, F. Gerlich, A. Faes, D. Psaltis and C. Moser, RSC Adv., 9, 14432 (2019); https://doi.org/10.1039/C9RA02221J
- R.I. Farah and S.N. Al-Haj Ali, Front. Public Health, 9, 629142 (2021); https://doi.org/10.3389/fpubh.2021.629142
- L. Dobelle, S. Kim, A.X. LeVan, H. Leandri, M.R. Hoffmann and C.A. Cid, ACS ES T Eng., 1, 1659 (2021); https://doi.org/10.1021/acsestengg.1c00240
- S.A. Abdul-Wahab and M.A. Al-Weshahi, Water Resour. Manage., 23, 2437 (2009); https://doi.org/10.1007/s11269-008-9389-7
- M.I. Alvarado-Ávila, E. Toledo-Carrillo and J. Dutta, ACS Omega, 7, 37465 (2022); https://doi.org/10.1021/acsomega.2c04248
- V. Rengarajan, G. Sozhan and K. Narasimham, Bull. Electrochem., 12, 327 (1996).
- J. Hooper, On-site Generation of Sodium Hypochlorite Basic Operating Principles and Design Considerations, In: Proceedings of the Annual Water Industry Engineers and Operators Conference, Bendigo, Australia (2005).
- Bureau of Indian Standards, I. IS 3025 (PART 26): 1986 Methods of Sampling and Test (Physical and Chemeical) for Water and Wastewater Part 26: Chlorine residual, First Revision (2004).
- Water Environmental Federation, American Public Health Association (APHA): Washington, DC, USA p. 21 (2005).
- H. Shinohara and A. Tiwari, Graphene: An Introduction to the Fundamentals and Industrial Applications, John Wiley & Sons (2015).
- L.F. Castañeda, F.C. Walsh, J.L. Nava and C.P. de León, Electrochim. Acta, 258, 1115 (2017); https://doi.org/10.1016/j.electacta.2017.11.165
- T.B. Joseph, N. Sanil, K.S. Mohandas and K. Nagarajan, J. Electrochem. Soc., 162, E51 (2015); https://doi.org/10.1149/2.0521506jes
- N. Nagai, M. Takeuchi, T. Kimura and T. Oka, Int. J. Hydrogen Energy, 28, 35 (2003); https://doi.org/10.1016/S0360-3199(02)00027-7
- M. Radepont, Y. Coquinot, K. Janssens, J.-J. Ezrati, W. de Nolfa and Marine Cotte, J. Anal. At. Spectrom., 30, 599 (2015); https://doi.org/10.1039/C4JA00372A
- B.R. Johnson and N.A. Remeikis, J. Endod., 19, 40 (1993); https://doi.org/10.1016/S0099-2399(06)81040-X
References
A. Al-Yaqubi, A. Aliewi and Z. Mimi, Water Int., 32, 219 (2007); https://doi.org/10.1080/02508060708692202
Y. Mogheir and N.A. Bohissi, J. Environ. Prot., 6, 599 (2015); https://doi.org/10.4236/jep.2015.66054
M.R. Al-Agha and R.S. Mortaja, Desalination, 173, 157 (2005); https://doi.org/10.1016/j.desal.2004.06.212
S.N. Backer, I. Bouaziz, N. Kallayi, R.T. Thomas, G. Preethikumar, M.S. Takriff, T. Laoui and M.A. Atieh, Sustainability, 14, 6752 (2022); https://doi.org/10.3390/su14116752
E. Chinello, S.M.H. Hashemi, D. Psaltis and C. Moser, J. Electrochem. Soc., 166, E336 (2019); https://doi.org/10.1149/2.0491912jes
M. Saleem, M.H. Chakrabarti, D.B. Hasan, M.S. Islam, S.A. Hajimolana, R. Yussof, M.A. Hussain, G.M.A. Khan and B.S. Ali, Int. J. Electrochem. Sci., 7, 3929 (2012); https://doi.org/10.1016/S1452-3981(23)19510-1
N. Al-Areqi, E. Alaghbari, R. Saif, M.A.N. Mahyoub, S.A.A. Hizam and H.H.A.S. Morshed, Int. J. Sci. Eng. Res., 12, 129 (2021).
E. Chinello, M.A. Modestino, J.W. Schüttauf, L. Coulot, M. Ackermann, F. Gerlich, A. Faes, D. Psaltis and C. Moser, RSC Adv., 9, 14432 (2019); https://doi.org/10.1039/C9RA02221J
R.I. Farah and S.N. Al-Haj Ali, Front. Public Health, 9, 629142 (2021); https://doi.org/10.3389/fpubh.2021.629142
L. Dobelle, S. Kim, A.X. LeVan, H. Leandri, M.R. Hoffmann and C.A. Cid, ACS ES T Eng., 1, 1659 (2021); https://doi.org/10.1021/acsestengg.1c00240
S.A. Abdul-Wahab and M.A. Al-Weshahi, Water Resour. Manage., 23, 2437 (2009); https://doi.org/10.1007/s11269-008-9389-7
M.I. Alvarado-Ávila, E. Toledo-Carrillo and J. Dutta, ACS Omega, 7, 37465 (2022); https://doi.org/10.1021/acsomega.2c04248
V. Rengarajan, G. Sozhan and K. Narasimham, Bull. Electrochem., 12, 327 (1996).
J. Hooper, On-site Generation of Sodium Hypochlorite Basic Operating Principles and Design Considerations, In: Proceedings of the Annual Water Industry Engineers and Operators Conference, Bendigo, Australia (2005).
Bureau of Indian Standards, I. IS 3025 (PART 26): 1986 Methods of Sampling and Test (Physical and Chemeical) for Water and Wastewater Part 26: Chlorine residual, First Revision (2004).
Water Environmental Federation, American Public Health Association (APHA): Washington, DC, USA p. 21 (2005).
H. Shinohara and A. Tiwari, Graphene: An Introduction to the Fundamentals and Industrial Applications, John Wiley & Sons (2015).
L.F. Castañeda, F.C. Walsh, J.L. Nava and C.P. de León, Electrochim. Acta, 258, 1115 (2017); https://doi.org/10.1016/j.electacta.2017.11.165
T.B. Joseph, N. Sanil, K.S. Mohandas and K. Nagarajan, J. Electrochem. Soc., 162, E51 (2015); https://doi.org/10.1149/2.0521506jes
N. Nagai, M. Takeuchi, T. Kimura and T. Oka, Int. J. Hydrogen Energy, 28, 35 (2003); https://doi.org/10.1016/S0360-3199(02)00027-7
M. Radepont, Y. Coquinot, K. Janssens, J.-J. Ezrati, W. de Nolfa and Marine Cotte, J. Anal. At. Spectrom., 30, 599 (2015); https://doi.org/10.1039/C4JA00372A
B.R. Johnson and N.A. Remeikis, J. Endod., 19, 40 (1993); https://doi.org/10.1016/S0099-2399(06)81040-X