Copyright (c) 2023 Hilary Rutto, Linda Sibali , Robert Mbedzi, Tumisang Seodigeng
This work is licensed under a Creative Commons Attribution 4.0 International License.
Optimization of Ca2+ Removal from Cooling Tower Water using Amberlite IR120 and Amberjet 1200 Resins: A Response Surface Methodology Study
Corresponding Author(s) : Hilary Rutto
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
n present study, the removal of Ca2+ from cooling tower water using Amberlite IR120 and Amberjet 1200 was optimized using the response surface methodology (RSM). The effect of operational parameters such as contact time (min), pH, dosage (mL), concentration (mg/L) and temperature (K) were investigated using a central composite design. The regeneration of the Amberlite IR120 and Amberjet were also studied. The study aimed to apply RSM to investigate and optimize the ion exchange operating parameters. Furthermore, the second-order empirical model was developed and correlated sufficiently to the ion exchange experimental data. The optimal ion exchange operating conditions for Amberlite IR120 and Amberjet 1200 were found to be: contact time was 120 min, dosage of 150 mL, the initial pH level of 2, a concentration of 4,00 mg/L and temperature of 343 K. Regeneration of Amberlite IR120 and Amberjet 1200 using 0.5 M NaCl stripping solution initially showed an increase in % Ca2+ and Mg2+ removal, then a decrease in subsequent cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.E. Kimbrough and I.H. Suffet, Environ. Sci. Technol., 29, 2217 (1995); https://doi.org/10.1021/es00009a010
- S.F. Ahmed, P.S. Kumar, M.R. Rozbu, A.T. Chowdhury, S. Nuzhat and N. Rafa, Environ. Technol. Innov., 25, 102114 (2022); https://doi.org/10.1016/j.eti.2021.102114
- R. González-Gómez, A. Ortega, L.M. Lazo and G. Burillo, Radiat. Phys. Chem., 102, 117 (2014); https://doi.org/10.1016/j.radphyschem.2014.04.026
- S.B. Jadhav, A.S. Chougule, D.P. Shah, C.S. Pereira and J.P. Jadhav, Clean Technol. Environ. Policy, 17, 709 (2015); https://doi.org/10.1007/s10098-014-0827-3
- J. Liu, G. Hu, K. Du, Z. Peng and Y. Cao, J. Clean. Prod., 84, 746 (2014); https://doi.org/10.1016/j.jclepro.2014.01.062
- N.A.A. Qasem, R.H. Mohammed and D.U. Lawal, npj Clean Water, 4, 36 (2021); https://doi.org/10.1038/s41545-021-00127-0
- S. Rengaraj, J.W. Yeon, Y. Kim, Y. Jung, Y.K. Ha and W.H. Kim, J. Hazard. Mater., 143, 469 (2007); https://doi.org/10.1016/j.jhazmat.2006.09.064
- S.A. Abo-Farha, A.Y. Abdel-Aal, I.A. Ashour and S.E. Garamon, J. Hazard. Mater., 169, 190 (2009); https://doi.org/10.1016/j.jhazmat.2009.03.086
- K.C. Khulbe and T. Matsuura, Appl. Water Sci., 8, 19 (2018); https://doi.org/10.1007/s13201-018-0661-6
- L. Malise, H. Rutto, T. Seodigeng, L. Sibali abd P. Ndibewu, Chem. Eng. Trans., 82, 421 (2020); https://doi.org/10.3303/CET2082071
- M. Banza and H. Rutto, J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 57, 117 (2022); https://doi.org/10.1080/10934529.2022.2036552
- H. Rutto, T. Seidigeng and L. Malise, Arch. Environ. Prot., 45, 92 (2023); https://doi.org/10.24425/aep.2019.130245
- S.R. Devi and M.N.V. Prasad, Heavy Met. Stress Plants, 144, 99 (1999); https://doi.org/10.1007/978-3-662-07745-0_5
- S. Kumar and S. Jain, J. Chem., 2013, 957647 (2013); https://doi.org/10.1155/2013/957647
- R. Marr and T. Gamse, Chem. Eng. Process., 39, 19 (2000); https://doi.org/10.1016/S0255-2701(99)00070-7
- E. Pehlivan and T. Altun, J. Hazard. Mater., 134, 149 (2006); https://doi.org/10.1016/j.jhazmat.2005.10.052
- E. Maliou, M. Malamis and P.O. Sakellarides, Water Sci. Technol., 25, 133 (1992); https://doi.org/10.2166/wst.1992.0020
- J.P. Chen and L. Wang, Sep. Sci. Technol., 36, 3617 (2001); https://doi.org/10.1081/SS-100108352
- P. Outola, H. Leinonen, M. Ridell and J. Lehto, Solvent Extr. Ion Exch., 19, 743 (2001); https://doi.org/10.1081/SEI-100103818
- P. Woodberry, G. Stevens, I. Snape and I. Stark, Solvent Extr. Ion Exch., 23, 289 (2005); https://doi.org/10.1081/SEI-200044387
- A. Agrawal, K.K. Sahu and J.P. Rawat, Solvent Extr. Ion Exch., 21, 763 (2003); https://doi.org/10.1081/SEI-120024556
- M. Laikhtman, J. Riviello and J.S. Rohrer, J. Chromatogr. A, 816, 282 (1998); https://doi.org/10.1016/S0021-9673(98)00530-5
- C. Özmetin, Ö. Aydin, M.M. Kocakerim, M. Korkmaz and E. Özmetin, Chem. Eng. J., 148, 420 (2009); https://doi.org/10.1016/j.cej.2008.09.021
- A.P. Kryvoruchko, I.D. Atamanenko and L.Y. Yurlova, J. Membr. Sci., 228, 77 (2004); https://doi.org/10.1016/j.memsci.2003.09.013
- W. Jiang, J.A. Joens, D.D. Dionysiou and K.E. O’Shea, J. Photochem., 262, 7 (2013); https://doi.org/10.1016/j.jphotochem.2013.04.008
- M.A. Islam, V. Sakkas and T.A. Albanis, J. Hazard. Mater., 170, 230 (2009); https://doi.org/10.1016/j.jhazmat.2009.04.106
- V. Petrovic, V. Opacic-Galic, S. Zivkovic, B. Nikolic, V. Danilovic, V. Miletic, V. Jokanovic and D. Mitic-Culafic, Int. Endodontic J., 48, 966 (2015); https://doi.org/10.1111/iej.12391
- M. Borandegi and A. Nezamzadeh-Ejhieh, Colloids Surf. A Physicochem. Eng. Asp., 479, 35 (2015); https://doi.org/10.1016/j.colsurfa.2015.03.040
- M. Argun, J. Hazard. Mater., 150, 587 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.008
- C.H. Giles, A.P. D’Silva and I.A. Easton, J. Colloid Interface Sci., 47, 766 (1974); https://doi.org/10.1016/0021-9797(74)90253-7
References
D.E. Kimbrough and I.H. Suffet, Environ. Sci. Technol., 29, 2217 (1995); https://doi.org/10.1021/es00009a010
S.F. Ahmed, P.S. Kumar, M.R. Rozbu, A.T. Chowdhury, S. Nuzhat and N. Rafa, Environ. Technol. Innov., 25, 102114 (2022); https://doi.org/10.1016/j.eti.2021.102114
R. González-Gómez, A. Ortega, L.M. Lazo and G. Burillo, Radiat. Phys. Chem., 102, 117 (2014); https://doi.org/10.1016/j.radphyschem.2014.04.026
S.B. Jadhav, A.S. Chougule, D.P. Shah, C.S. Pereira and J.P. Jadhav, Clean Technol. Environ. Policy, 17, 709 (2015); https://doi.org/10.1007/s10098-014-0827-3
J. Liu, G. Hu, K. Du, Z. Peng and Y. Cao, J. Clean. Prod., 84, 746 (2014); https://doi.org/10.1016/j.jclepro.2014.01.062
N.A.A. Qasem, R.H. Mohammed and D.U. Lawal, npj Clean Water, 4, 36 (2021); https://doi.org/10.1038/s41545-021-00127-0
S. Rengaraj, J.W. Yeon, Y. Kim, Y. Jung, Y.K. Ha and W.H. Kim, J. Hazard. Mater., 143, 469 (2007); https://doi.org/10.1016/j.jhazmat.2006.09.064
S.A. Abo-Farha, A.Y. Abdel-Aal, I.A. Ashour and S.E. Garamon, J. Hazard. Mater., 169, 190 (2009); https://doi.org/10.1016/j.jhazmat.2009.03.086
K.C. Khulbe and T. Matsuura, Appl. Water Sci., 8, 19 (2018); https://doi.org/10.1007/s13201-018-0661-6
L. Malise, H. Rutto, T. Seodigeng, L. Sibali abd P. Ndibewu, Chem. Eng. Trans., 82, 421 (2020); https://doi.org/10.3303/CET2082071
M. Banza and H. Rutto, J. Environ. Sci. Health Part A Tox. Hazard. Subst. Environ. Eng., 57, 117 (2022); https://doi.org/10.1080/10934529.2022.2036552
H. Rutto, T. Seidigeng and L. Malise, Arch. Environ. Prot., 45, 92 (2023); https://doi.org/10.24425/aep.2019.130245
S.R. Devi and M.N.V. Prasad, Heavy Met. Stress Plants, 144, 99 (1999); https://doi.org/10.1007/978-3-662-07745-0_5
S. Kumar and S. Jain, J. Chem., 2013, 957647 (2013); https://doi.org/10.1155/2013/957647
R. Marr and T. Gamse, Chem. Eng. Process., 39, 19 (2000); https://doi.org/10.1016/S0255-2701(99)00070-7
E. Pehlivan and T. Altun, J. Hazard. Mater., 134, 149 (2006); https://doi.org/10.1016/j.jhazmat.2005.10.052
E. Maliou, M. Malamis and P.O. Sakellarides, Water Sci. Technol., 25, 133 (1992); https://doi.org/10.2166/wst.1992.0020
J.P. Chen and L. Wang, Sep. Sci. Technol., 36, 3617 (2001); https://doi.org/10.1081/SS-100108352
P. Outola, H. Leinonen, M. Ridell and J. Lehto, Solvent Extr. Ion Exch., 19, 743 (2001); https://doi.org/10.1081/SEI-100103818
P. Woodberry, G. Stevens, I. Snape and I. Stark, Solvent Extr. Ion Exch., 23, 289 (2005); https://doi.org/10.1081/SEI-200044387
A. Agrawal, K.K. Sahu and J.P. Rawat, Solvent Extr. Ion Exch., 21, 763 (2003); https://doi.org/10.1081/SEI-120024556
M. Laikhtman, J. Riviello and J.S. Rohrer, J. Chromatogr. A, 816, 282 (1998); https://doi.org/10.1016/S0021-9673(98)00530-5
C. Özmetin, Ö. Aydin, M.M. Kocakerim, M. Korkmaz and E. Özmetin, Chem. Eng. J., 148, 420 (2009); https://doi.org/10.1016/j.cej.2008.09.021
A.P. Kryvoruchko, I.D. Atamanenko and L.Y. Yurlova, J. Membr. Sci., 228, 77 (2004); https://doi.org/10.1016/j.memsci.2003.09.013
W. Jiang, J.A. Joens, D.D. Dionysiou and K.E. O’Shea, J. Photochem., 262, 7 (2013); https://doi.org/10.1016/j.jphotochem.2013.04.008
M.A. Islam, V. Sakkas and T.A. Albanis, J. Hazard. Mater., 170, 230 (2009); https://doi.org/10.1016/j.jhazmat.2009.04.106
V. Petrovic, V. Opacic-Galic, S. Zivkovic, B. Nikolic, V. Danilovic, V. Miletic, V. Jokanovic and D. Mitic-Culafic, Int. Endodontic J., 48, 966 (2015); https://doi.org/10.1111/iej.12391
M. Borandegi and A. Nezamzadeh-Ejhieh, Colloids Surf. A Physicochem. Eng. Asp., 479, 35 (2015); https://doi.org/10.1016/j.colsurfa.2015.03.040
M. Argun, J. Hazard. Mater., 150, 587 (2008); https://doi.org/10.1016/j.jhazmat.2007.05.008
C.H. Giles, A.P. D’Silva and I.A. Easton, J. Colloid Interface Sci., 47, 766 (1974); https://doi.org/10.1016/0021-9797(74)90253-7