Copyright (c) 2023 Reshma, HUSSAIN SHAIK, KONDA MANOHAR, B. MUKESH, RAMANA REDDY BODDU, SRAVANTHI ITTIKYALA, PUPPALA VEERA SOMAIAH
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Characterization, Biological Activity of PEG Capped Silver Nanoparticles and Photocatalytic Degradation of Methylene Blue Dye using LC-MS Method
Corresponding Author(s) : Reshma
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
Silver nanoparticles (AgNPs) were prepared by co-precipitation method using a capping agent, PEG-4000 (polyethylene glycol). The synthesized AgNPs were characterized using UV-visible, FTIR, SEM, EDX and TEM techniques. The bandgap energy of snythesized nanoparticles was determined using UV-visible spectra and found to be 3.07 eV. The particle size of nanoparticles calculated from the TEM and XRD pattern was in the range of 10-23 nm. The degradation efficiency of PEG capped AgNPs towards methylene blue (MB) dye under solar radiation was 63.78%. The photocatalytic degradation of MB dye follows the pseudo-first-order kinetics with an apparent rate constant of 1.1 × 10-2 min-1. The degradation products of MB dye during the photocatalytic process were identified using liquid chromatography-mass spectrometry (LC-ESI-TOF-MS). The antibacterial activity of synthesized PEG capped AgNPs using a disc diffusion method against four different Gram-positive and Gram-negative bacterial strains. The results showed that the synthesized nanoparticles could exhibit antibacterial activity. The anticancer activity of synthesized PEG capped AgNPs was tested against cancer cell lines such as A549 and HepG2. The results revealed that the synthesized PEG capped AgNPs have also shown an excellent anticancer activity with increasing their concentration. The antidiabetic activity of PEG capped AgNPs was studied against the a- lucosidase enzyme. The results confirmed that the synthesized AgNPs were shown a-glucosidase inhibition to 45.08%. The ABTS and DPPH radical scavenging activities were used to assay the antioxidant activity of synthesized PEG capped AgNPs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Derikvand, F. Bigi, R. Maggi, C.G. Piscopo and G. Sartori, J. Catal., 271, 99 (2010); https://doi.org/10.1016/j.jcat.2010.02.015
- W. Wang, Q. Zhao, J. Dong and J. Li, Int. J. Hydrogen Energy, 36, 7374 (2011); https://doi.org/10.1016/j.ijhydene.2011.03.096
- V.V. Petrov, T.N. Nazarova, A.N. Korolev and N.F. Kopilova, Sens. Actuators B Chem., 133, 291 (2008); https://doi.org/10.1016/j.snb.2008.02.026
- E. Sanli, B.Z. Uysal and M.L. Aksu, Int. J. Hydrogen Energy, 33, 2097 (2008); https://doi.org/10.1016/j.ijhydene.2008.01.049
- Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M. Inaba, A. Tasaka and M. Izaki, Chem. Mater., 20, 1254 (2008); https://doi.org/10.1021/cm702865r
- W.X. Li, C. Stampfl and M. Scheffler, Phys. Rev. B Condens. Matter, 68, 165412 (2003); https://doi.org/10.1103/PhysRevB.68.165412
- G. Cabello-Carramolino and M.D. Petit-Dominguez, Mikrochim. Acta, 164, 405 (2009); https://doi.org/10.1007/s00604-008-0074-6
- C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu and C.-M. Che, J. Proteome Res., 5, 916 (2006); https://doi.org/10.1021/pr0504079
- A. Panáèek, L. Kvitek, R. Prucek, M. Koláø, R. Veèeøová, N. Pizúrová, V.K. Sharma, T. Nevìèná and R. Zboøil, J. Phys. Chem. B, 110, 16248 (2006); https://doi.org/10.1021/jp063826h
- C. Luo, Y. Zhang, X. Zeng, Y. Zeng and Y. Wang, J. Colloid Interface Sci., 288, 444 (2005); https://doi.org/10.1016/j.jcis.2005.03.005
- T.H. Tran and V.T. Nguyen, Int. Sch. Res. Notices, 2014, 856592 (2014); https://doi.org/10.1155/2014/856592
- M. Zahoor, N. Nazir, M. Iftikhar, S. Naz, I. Zekker, J. Burlakovs, F. Uddin, A.W. Kamran, A. Kallistova, N. Pimenov and F.A. Khan, Water, 13, 2216 (2021); https://doi.org/10.3390/w13162216
- S. Iravani, H. Korbekandi, S.V. Mirmohammadi and B. Zolfaghari, Res. Pharm. Sci., 9, 385 (2014).
- A. López-Serrano, R.M. Olivas, J.S. Landaluze and C. Cámara, Anal. Methods, 6, 38 (2014); https://doi.org/10.1039/C3AY40517F
- M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
- L. Wang, C. Hu and L. Shao, Int. J. Nanomedicine, 12, 1227 (2017); https://doi.org/10.2147/IJN.S121956
- D. Ayodhya, M. Venkatesham, A.S. Kumari, G.B. Reddy, D. Ramakrishna and G. Veerabhadram, J. Fluoresc., 25, 1481 (2015); https://doi.org/10.1007/s10895-015-1639-5
- M. Wypij, T. Jedrzejewski, J. Trzcinska-Wencel, M. Ostrowski, M. Rai and P. Golinska, Front. Microbiol., 12, 632505 (2021); https://doi.org/10.3389/fmicb.2021.632505
- M.A. Siddiqui, M.P. Kashyap, V. Kumar, A.A. Al-Khedhairy, J. Musarrat and A.B. Pant, Toxicol. in Vitro, 24, 1592 (2010); https://doi.org/10.1016/j.tiv.2010.06.008
- A.S.R. Sailakshmi, A. Anand, K. Madhusudana, V.L. Nayak, A. Zehra, K.S. Babu and A.K. Tiwari, Indian J. Natural Prod. Resour., 9, 194 (2018).
- D. Ayodhya, M. Venkatesham, A. Santoshi Kumari, G.B. Reddy, D. Ramakrishna and G. Veerabhadram, J. Exp. Nanosci., 11, 418 (2016); https://doi.org/10.1080/17458080.2015.1070312
- M.N. Chong, B. Jin, C.W. Chow and C. Saint, Water Res., 44, 2997 (2010); https://doi.org/10.1016/j.watres.2010.02.039
- N. Daneshvar, D. Salari and A.R. Khataee, J. Photochem. Photobiol. Chem., 162, 317 (2004); https://doi.org/10.1016/S1010-6030(03)00378-2
- H. Al-Ekabi and N. Serpone, J. Phys. Chem., 92, 5726 (1988); https://doi.org/10.1021/j100331a036
- J.J. Pitt, Clin. Biochem. Rev., 30, 19 (2009).
- S. Chen, S. Webster, R. Czerw, J. Xu and D.L. Carroll, J. Nanosci. Nanotechnol., 4, 254 (2004); https://doi.org/10.1166/jnn.2004.034
- S.S. Shankar, A. Ahmad and M. Sastry, Biotechnol. Prog., 19, 1627 (2003); https://doi.org/10.1021/bp034070w
- X.F. Zhang, Z.G. Liu, W. Shen and S. Gurunathan, Int. J. Mol. Sci., 17, 1534 (2016); https://doi.org/10.3390/ijms17091534
- M.M. Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. Alsalhi, M. Alhoshan and A.S. Aldwayyan, Appl. Surf. Sci., 257, 10607 (2011); https://doi.org/10.1016/j.apsusc.2011.07.058
- H. Kumar and R. Rani, Int. J. Eng. Innov. Technol., 3, 344 (2013).
- M.B. Ahmad, M.Y. Tay, K. Shameli, M.Z. Hussein and J.J. Lim, Int. J. Mol. Sci., 12, 4872 (2011); https://doi.org/10.3390/ijms12084872
- P. Raveendran, J. Fu and S.L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003); https://doi.org/10.1021/ja029267j
- K. Gupta, P.C. Jana and A.K. Meikap, Synth. Met., 160, 1566 (2010); https://doi.org/10.1016/j.synthmet.2010.05.026
- M. Fu, Q. Li, D. Sun, Y. Lu, N. He, X. Deng, H. Wang and J. Huang, Chin. J. Chem. Eng., 14, 114 (2006); https://doi.org/10.1016/S1004-9541(06)60046-3
- K. Shameli, M. Bin Ahmad, S.D. Jazayeri, S. Sedaghat, P. Shabanzadeh, H. Jahangirian, M. Mahdavi and Y. Abdollahi, Int. J. Mol. Sci., 13, 6639 (2012); https://doi.org/10.3390/ijms13066639
- T.R. Dhakal, S.R. Mishra, Z. Glenn and B.K. Rai, J. Nanosci. Nanotechnol., 12, 6389 (2012); https://doi.org/10.1166/jnn.2012.6561
- C. Díaz-Cruz, G. Alonso Nuñez, H. Espinoza-Gómez and L.Z. Flores-López, Eur. Polym. J., 83, 265 (2016); https://doi.org/10.1016/j.eurpolymj.2016.08.025
- M. Roldán, N. Pellegri and O. de Sanctis, J. Nanoparticles, 2013, 524150 (2013); https://doi.org/10.1155/2013/524150
- Z. Khan, M.A. Nisar, S.Z. Hussain, M.N. Arshad and A. Rehman, Appl. Microbiol. Biotechnol., 99, 10745 (2015); https://doi.org/10.1007/s00253-015-6901-x
- M.R. Das, R.K. Sarma, R. Saikia, V.S. Kale, M.V. Shelke and P. Sengupta, Colloids Surf. B Biointerfaces, 83, 16 (2011); https://doi.org/10.1016/j.colsurfb.2010.10.033
- M.A. Shaker and M.I. Shaaban, J. Taibah Univ. Med. Sci., 12, 291 (2017); https://doi.org/10.1016/j.jtumed.2017.02.008
- P. Gopinath, S.K. Gogoi, A. Chattopadhyay and S.S. Ghosh, Nanotechnology, 19, 075104 (2008); https://doi.org/10.1088/0957-4484/19/7/075104
- P.V. AshaRani, G. Low Kah Mun, M.P. Hande and S. Valiyaveettil, ACS Nano, 3, 279 (2009); https://doi.org/10.1021/nn800596w
- Z. Muhammad, A. Raza, S. Ghafoor, A. Naeem, S.S. Naz, S. Riaz, W. Ahmed and N.F. Rana, Eur. J. Pharm. Sci., 91, 251 (2016); https://doi.org/10.1016/j.ejps.2016.04.029
- K. Rajaram, D.C. Aiswarya and P. Sureshkumar, Mater. Lett., 138, 251 (2015); https://doi.org/10.1016/j.matlet.2014.10.017
- A. Hashim, I.R. Agool and K.J. Kadhim, J. Bionanosci., 12, 608 (2018); https://doi.org/10.1166/jbns.2018.1580
- T. SivaKumar, T. Rathimeena, V. Thangapandian and T. Shankar, J. Biosci. Bioeng., 1, 22 (2015).
- L. Wang, Y. Wu, J. Xie, S. Wu and Z. Wu, Mater. Sci. Eng. C, 86, 1 (2018); https://doi.org/10.1016/j.msec.2018.01.003
- E.M. Azzam, N.A. Fathy, S.M. El-Khouly and R.M. Sami, J. Water Process Eng., 28, 311 (2019); https://doi.org/10.1016/j.jwpe.2019.02.016
- K. Roy, C.K. Sarkar and C.K. Ghosh, Appl. Nanosci., 5, 953 (2015); https://doi.org/10.1007/s13204-014-0392-4
- C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang and W. Wang, RSC Adv., 7, 23699 (2017); https://doi.org/10.1039/C7RA02423A
- S. Xia, L. Zhang, G. Pan, P. Qian and Z. Ni, Phys. Chem. Chem. Phys., 17, 5345 (2015); https://doi.org/10.1039/C4CP03877K
References
F. Derikvand, F. Bigi, R. Maggi, C.G. Piscopo and G. Sartori, J. Catal., 271, 99 (2010); https://doi.org/10.1016/j.jcat.2010.02.015
W. Wang, Q. Zhao, J. Dong and J. Li, Int. J. Hydrogen Energy, 36, 7374 (2011); https://doi.org/10.1016/j.ijhydene.2011.03.096
V.V. Petrov, T.N. Nazarova, A.N. Korolev and N.F. Kopilova, Sens. Actuators B Chem., 133, 291 (2008); https://doi.org/10.1016/j.snb.2008.02.026
E. Sanli, B.Z. Uysal and M.L. Aksu, Int. J. Hydrogen Energy, 33, 2097 (2008); https://doi.org/10.1016/j.ijhydene.2008.01.049
Y. Ida, S. Watase, T. Shinagawa, M. Watanabe, M. Chigane, M. Inaba, A. Tasaka and M. Izaki, Chem. Mater., 20, 1254 (2008); https://doi.org/10.1021/cm702865r
W.X. Li, C. Stampfl and M. Scheffler, Phys. Rev. B Condens. Matter, 68, 165412 (2003); https://doi.org/10.1103/PhysRevB.68.165412
G. Cabello-Carramolino and M.D. Petit-Dominguez, Mikrochim. Acta, 164, 405 (2009); https://doi.org/10.1007/s00604-008-0074-6
C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K.-H. Tam, J.-F. Chiu and C.-M. Che, J. Proteome Res., 5, 916 (2006); https://doi.org/10.1021/pr0504079
A. Panáèek, L. Kvitek, R. Prucek, M. Koláø, R. Veèeøová, N. Pizúrová, V.K. Sharma, T. Nevìèná and R. Zboøil, J. Phys. Chem. B, 110, 16248 (2006); https://doi.org/10.1021/jp063826h
C. Luo, Y. Zhang, X. Zeng, Y. Zeng and Y. Wang, J. Colloid Interface Sci., 288, 444 (2005); https://doi.org/10.1016/j.jcis.2005.03.005
T.H. Tran and V.T. Nguyen, Int. Sch. Res. Notices, 2014, 856592 (2014); https://doi.org/10.1155/2014/856592
M. Zahoor, N. Nazir, M. Iftikhar, S. Naz, I. Zekker, J. Burlakovs, F. Uddin, A.W. Kamran, A. Kallistova, N. Pimenov and F.A. Khan, Water, 13, 2216 (2021); https://doi.org/10.3390/w13162216
S. Iravani, H. Korbekandi, S.V. Mirmohammadi and B. Zolfaghari, Res. Pharm. Sci., 9, 385 (2014).
A. López-Serrano, R.M. Olivas, J.S. Landaluze and C. Cámara, Anal. Methods, 6, 38 (2014); https://doi.org/10.1039/C3AY40517F
M. Balouiri, M. Sadiki and S.K. Ibnsouda, J. Pharm. Anal., 6, 71 (2016); https://doi.org/10.1016/j.jpha.2015.11.005
L. Wang, C. Hu and L. Shao, Int. J. Nanomedicine, 12, 1227 (2017); https://doi.org/10.2147/IJN.S121956
D. Ayodhya, M. Venkatesham, A.S. Kumari, G.B. Reddy, D. Ramakrishna and G. Veerabhadram, J. Fluoresc., 25, 1481 (2015); https://doi.org/10.1007/s10895-015-1639-5
M. Wypij, T. Jedrzejewski, J. Trzcinska-Wencel, M. Ostrowski, M. Rai and P. Golinska, Front. Microbiol., 12, 632505 (2021); https://doi.org/10.3389/fmicb.2021.632505
M.A. Siddiqui, M.P. Kashyap, V. Kumar, A.A. Al-Khedhairy, J. Musarrat and A.B. Pant, Toxicol. in Vitro, 24, 1592 (2010); https://doi.org/10.1016/j.tiv.2010.06.008
A.S.R. Sailakshmi, A. Anand, K. Madhusudana, V.L. Nayak, A. Zehra, K.S. Babu and A.K. Tiwari, Indian J. Natural Prod. Resour., 9, 194 (2018).
D. Ayodhya, M. Venkatesham, A. Santoshi Kumari, G.B. Reddy, D. Ramakrishna and G. Veerabhadram, J. Exp. Nanosci., 11, 418 (2016); https://doi.org/10.1080/17458080.2015.1070312
M.N. Chong, B. Jin, C.W. Chow and C. Saint, Water Res., 44, 2997 (2010); https://doi.org/10.1016/j.watres.2010.02.039
N. Daneshvar, D. Salari and A.R. Khataee, J. Photochem. Photobiol. Chem., 162, 317 (2004); https://doi.org/10.1016/S1010-6030(03)00378-2
H. Al-Ekabi and N. Serpone, J. Phys. Chem., 92, 5726 (1988); https://doi.org/10.1021/j100331a036
J.J. Pitt, Clin. Biochem. Rev., 30, 19 (2009).
S. Chen, S. Webster, R. Czerw, J. Xu and D.L. Carroll, J. Nanosci. Nanotechnol., 4, 254 (2004); https://doi.org/10.1166/jnn.2004.034
S.S. Shankar, A. Ahmad and M. Sastry, Biotechnol. Prog., 19, 1627 (2003); https://doi.org/10.1021/bp034070w
X.F. Zhang, Z.G. Liu, W. Shen and S. Gurunathan, Int. J. Mol. Sci., 17, 1534 (2016); https://doi.org/10.3390/ijms17091534
M.M. Khan, S. Kumar, M. Ahamed, S.A. Alrokayan, M.S. Alsalhi, M. Alhoshan and A.S. Aldwayyan, Appl. Surf. Sci., 257, 10607 (2011); https://doi.org/10.1016/j.apsusc.2011.07.058
H. Kumar and R. Rani, Int. J. Eng. Innov. Technol., 3, 344 (2013).
M.B. Ahmad, M.Y. Tay, K. Shameli, M.Z. Hussein and J.J. Lim, Int. J. Mol. Sci., 12, 4872 (2011); https://doi.org/10.3390/ijms12084872
P. Raveendran, J. Fu and S.L. Wallen, J. Am. Chem. Soc., 125, 13940 (2003); https://doi.org/10.1021/ja029267j
K. Gupta, P.C. Jana and A.K. Meikap, Synth. Met., 160, 1566 (2010); https://doi.org/10.1016/j.synthmet.2010.05.026
M. Fu, Q. Li, D. Sun, Y. Lu, N. He, X. Deng, H. Wang and J. Huang, Chin. J. Chem. Eng., 14, 114 (2006); https://doi.org/10.1016/S1004-9541(06)60046-3
K. Shameli, M. Bin Ahmad, S.D. Jazayeri, S. Sedaghat, P. Shabanzadeh, H. Jahangirian, M. Mahdavi and Y. Abdollahi, Int. J. Mol. Sci., 13, 6639 (2012); https://doi.org/10.3390/ijms13066639
T.R. Dhakal, S.R. Mishra, Z. Glenn and B.K. Rai, J. Nanosci. Nanotechnol., 12, 6389 (2012); https://doi.org/10.1166/jnn.2012.6561
C. Díaz-Cruz, G. Alonso Nuñez, H. Espinoza-Gómez and L.Z. Flores-López, Eur. Polym. J., 83, 265 (2016); https://doi.org/10.1016/j.eurpolymj.2016.08.025
M. Roldán, N. Pellegri and O. de Sanctis, J. Nanoparticles, 2013, 524150 (2013); https://doi.org/10.1155/2013/524150
Z. Khan, M.A. Nisar, S.Z. Hussain, M.N. Arshad and A. Rehman, Appl. Microbiol. Biotechnol., 99, 10745 (2015); https://doi.org/10.1007/s00253-015-6901-x
M.R. Das, R.K. Sarma, R. Saikia, V.S. Kale, M.V. Shelke and P. Sengupta, Colloids Surf. B Biointerfaces, 83, 16 (2011); https://doi.org/10.1016/j.colsurfb.2010.10.033
M.A. Shaker and M.I. Shaaban, J. Taibah Univ. Med. Sci., 12, 291 (2017); https://doi.org/10.1016/j.jtumed.2017.02.008
P. Gopinath, S.K. Gogoi, A. Chattopadhyay and S.S. Ghosh, Nanotechnology, 19, 075104 (2008); https://doi.org/10.1088/0957-4484/19/7/075104
P.V. AshaRani, G. Low Kah Mun, M.P. Hande and S. Valiyaveettil, ACS Nano, 3, 279 (2009); https://doi.org/10.1021/nn800596w
Z. Muhammad, A. Raza, S. Ghafoor, A. Naeem, S.S. Naz, S. Riaz, W. Ahmed and N.F. Rana, Eur. J. Pharm. Sci., 91, 251 (2016); https://doi.org/10.1016/j.ejps.2016.04.029
K. Rajaram, D.C. Aiswarya and P. Sureshkumar, Mater. Lett., 138, 251 (2015); https://doi.org/10.1016/j.matlet.2014.10.017
A. Hashim, I.R. Agool and K.J. Kadhim, J. Bionanosci., 12, 608 (2018); https://doi.org/10.1166/jbns.2018.1580
T. SivaKumar, T. Rathimeena, V. Thangapandian and T. Shankar, J. Biosci. Bioeng., 1, 22 (2015).
L. Wang, Y. Wu, J. Xie, S. Wu and Z. Wu, Mater. Sci. Eng. C, 86, 1 (2018); https://doi.org/10.1016/j.msec.2018.01.003
E.M. Azzam, N.A. Fathy, S.M. El-Khouly and R.M. Sami, J. Water Process Eng., 28, 311 (2019); https://doi.org/10.1016/j.jwpe.2019.02.016
K. Roy, C.K. Sarkar and C.K. Ghosh, Appl. Nanosci., 5, 953 (2015); https://doi.org/10.1007/s13204-014-0392-4
C. Yang, W. Dong, G. Cui, Y. Zhao, X. Shi, X. Xia, B. Tang and W. Wang, RSC Adv., 7, 23699 (2017); https://doi.org/10.1039/C7RA02423A
S. Xia, L. Zhang, G. Pan, P. Qian and Z. Ni, Phys. Chem. Chem. Phys., 17, 5345 (2015); https://doi.org/10.1039/C4CP03877K