Copyright (c) 2023 Prasong Srihanam, Yodthong Baimark, Ansaya Thonpho, Suchai Tanisood
This work is licensed under a Creative Commons Attribution 4.0 International License.
Cellulose-Silk Fibroin Composite Particles for Hydrophilic Drug-Controlled Release System: Preparation and Characterization
Corresponding Author(s) : S. Tanisood
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
The objective of this study was to investigate the dissolution of cellulose (C) powder as a potential material for particle formation when combined with a silk fibroin (SF) solution. Each polymer solution as well as a mixture of cellulose and silk fibroin in different ratios were prepared into particles using the solvent emulsion-diffusion method. The particle morphology was characterized by scanning electron microscopy (SEM) and by attenuated reflection Fourier-transformed infrared spectroscopy (ATR-FTIR) and thermogravimetric analyzer (TGA) for the C-SF molecular interaction and thermal properties, respectively. The results showed that the cellulose particles appeared as separate fibers and loosely bound together, while silk fibroin particles were spherical in shape with dense texture and smooth surface. The C/SF mixed particles with different ratios could be formed into spherical particles and a ratio of 1:3 has the most spherical and solid. The ATR-FTIR results indicated the absorption spectra of the main functional groups both cellulose and silk fibroin. Blue dextran helped to enhance the temperature of the maximum decomposition rate (Td,max) of the particles via hydrogen bond interaction between the blue dextran and polymers. A burst release of blue dextran was observed in the first 12 h due to the swelling of particle surfaces and the slowest release found in the silk fibroin particles. The C/SF composite showed different blue dextran- eleased profiles and the particle with a high content of silk fibroin-released blue dextran in slowly rate. The results of this work can be used as a basis for applying C/SF composite particles in a hydrophilic drug release-controlled system.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Ma, Y. Liu, L. Fan and W. Yan, Carbohydr. Polym., 252, 117169 (2021); https://doi.org/10.1016/j.carbpol.2020.117169
- M. Saifullah, M.R.I. Shishir, R. Ferdowsi, M.R. Tanver Rahman and Q. Van Vuong, Trends Food Sci. Technol., 86, 230 (2019); https://doi.org/10.1016/j.tifs.2019.02.030
- C.C. Berton-Carabin and K. Schroën, Annu. Rev. Food Sci. Technol., 6, 263 (2015); https://doi.org/10.1146/annurev-food-081114-110822
- T. Nicolai and B. Murray, Food Hydrocoll., 68, 157 (2017); https://doi.org/10.1016/j.foodhyd.2016.08.036
- A. Sakar and E. Dickinson, Curr. Opin. Colloid Interface Sci., 49, 69 (2020); https://doi.org/10.1016/j.cocis.2020.04.004
- Y. Wang, X. Li, T. Li, Y. Wang, J. Jiang, X. Zhang, J. Huang, B. Xia, H.C. Shum, Z. Yang and W. Dong, Food Hydrocoll., 134, 108055 (2023); https://doi.org/10.1016/j.foodhyd.2022.108055
- J. Xiao, Y. Li and Q. Huang, Trends Food Sci. Technol., 55, 48 (2016); https://doi.org/10.1016/j.tifs.2016.05.010
- X. Li and R. de Vries, Curr. Opin. Food Sci., 21, 51 (2018); https://doi.org/10.1016/j.cofs.2018.05.012
- E.F. Ribeiro, P. Morell, V.R. Nicoletti, A. Quiles and I. Hernando, Food Hydrocoll., 119, 106839 (2021); https://doi.org/10.1016/j.foodhyd.2021.106839
- J. Feng, C.C. Berton-Carabin, V. Fogliano and K. Schroën, Trends Food Sci. Technol., 121, 129 (2022); https://doi.org/10.1016/j.tifs.2022.02.008
- J. Buchert, D. Ercili Cura, H. Ma, C. Gasparetti, E. Monogioudi, G. Faccio, M. Mattinen, H. Boer, R. Partanen, E. Selinheimo, R. Lantto and K. Kruus, Annu. Rev. Food Sci. Technol., 1, 113 (2010); https://doi.org/10.1146/annurev.food.080708.100841
- M. El Achaby, Z. Kassab, A. Barakat and A. Aboulkas, Ind. Crops Prod., 112, 499 (2018); https://doi.org/10.1016/j.indcrop.2017.12.049
- A. Takegawa, M. Murakami, Y. Kaneko and J. Kadokawa, Carbohydr. Polym., 79, 85 (2010); https://doi.org/10.1016/j.carbpol.2009.07.030
- K.L. Pickering, M.G.A. Efendy and T.M. Le, Compos., Part A Appl. Sci. Manuf., 83, 98 (2016); https://doi.org/10.1016/j.compositesa.2015.08.038
- S. Wang, A. Lu and L. Zhang, Prog. Polym. Sci., 53, 169 (2016); https://doi.org/10.1016/j.progpolymsci.2015.07.003
- A. Rajeswari, E.J.S. Christy, E. Swathi and A. Pius, J. Environ. Chem. Ecotoxicol, 2, 107 (2020); https://doi.org/10.1016/j.enceco.2020.07.003
- S.J. Eichhorn, A. Etale, J. Wang, L.A. Berglund, Y. Li, Y. Cai, C. Chen, E.D. Cranston, M.A. Johns, Z. Fang, G. Li, L. Hu, M. Khandelwal, K.-Y. Lee, K. Oksman, S. Pinitsoontorn, F. Quero, A. Sebastian, M.M. Titirici, Z. Xu, S. Vignolini and B. Frka-Petesic, J. Mater. Sci., 57, 5697 (2022); https://doi.org/10.1007/s10853-022-06903-8
- B. Peng, Z. Yao, X. Wang, M. Crombeen, D.G. Sweeney and K.C. Tam, Energy Environ., 5, 37 (2019); https://doi.org/10.1016/j.gee.2019.09.003
- D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang and J. Cai, Adv. Funct. Mater., 26, 6279 (2016); https://doi.org/10.1002/adfm.201601645
- N. Song, D. Jiao, S. Cui, X. Hou, P. Ding and L. Shi, ACS Appl. Mater. Interfaces, 9, 2924 (2017); https://doi.org/10.1021/acsami.6b11979
- E. Kontturi, P. Laaksonen, M.B. Linder, Nonappa, A.H. Gröschel, O.J. Rojas and O. Ikkala, Adv. Mater., 30, 1703779 (2018); https://doi.org/10.1002/adma.201703779
- X. Zhang, F. Lin, Q. Yuan, L. Zhu, C. Wang and S. Yang, Carbohydr. Polym., 215, 58 (2019); https://doi.org/10.1016/j.carbpol.2019.03.066
- H. Sadeghifar, R. Venditti, J. Jur, R.E. Gorga and J.J. Pawlak, ACS Sustain. Chem. Eng., 5, 625 (2016); https://doi.org/10.1021/acssuschemeng.6b02003
- S. Lopes, C. Afonso, I. Fernandes, M.-F. Barreiro, P. Costa and A.E. Rodrigues, Ind. Crops Prod., 139, 111407 (2019); https://doi.org/10.1016/j.indcrop.2019.05.057
- M.A. Rabbi, M.M. Rahman, H. Minami, M.R. Habib and H. Ahmad, Carbohydr. Polym., 233, 115842 (2020); https://doi.org/10.1016/j.carbpol.2020.115842
- A.E. Blok, D.P. Bolhuis, K.P. Velikov and M. Stieger, Food Hydrocoll., 138, 108398 (2023); https://doi.org/10.1016/j.foodhyd.2022.108398
- A.K.M. Nayab-Ul-Hossain, S.K. Sela, S.M.M. Alam, M.N. Hassan, J. Sarkar, C.M. Ahmed, S. Sadman, R.M. Hridoy, N. Mohsin, M.B. Hossain and S. Mia, Res. Green Sustain. Chem., 6, 100351 (2023); https://doi.org/10.1016/j.crgsc.2022.100351
- J. Lan, J. Chen, R. Zhu, C. Lin, X. Ma and S. Cao, Int. J. Biol. Macromol., 231, 123587 (2023); https://doi.org/10.1016/j.ijbiomac.2023.123587
- T.-T. Cao and Y.-Q. Zhang, Mater. Sci. Eng. C, 61, 940 (2016); https://doi.org/10.1016/j.msec.2015.12.082
- M.C. Arango, Y. Montoya, M.S. Peresin, J. Bustamante and C. Álvarez-López, Int. J. Polym. Mater., 70, 1115 (2021); https://doi.org/10.1080/00914037.2020.1785454
- C. Yang, L. Yao and L. Zhang, Smart Mater. Med., 4, 447 (2023); https://doi.org/10.1016/j.smaim.2023.01.003
- D. Hu, T. Li, Z. Xu, D. Liu, M. Yang and L. Zhu, Acta Biomater., 74, 385 (2018); https://doi.org/10.1016/j.actbio.2018.05.024
- C. Vepari and D.L. Kaplan, Prog. Polym. Sci., 32, 991 (2007); https://doi.org/10.1016/j.progpolymsci.2007.05.013
- S.U.D. Wani, S.P. Gautam, Z.L. Qadrie and H. Gangadharappa, Int. J. Biol. Macromol., 163, 2145 (2020); https://doi.org/10.1016/j.ijbiomac.2020.09.057
- Y. Li, L. Yao, L. Zhang, Y. Zhang, T. Zheng, L. Liu and L. Zhang, Food Chem., 355, 129479 (2021); https://doi.org/10.1016/j.foodchem.2021.129479
- P. Srihanam, Y. Srisuwan, T. Imsombut and Y. Baimark, Korean J. Chem. Eng., 28, 293 (2011); https://doi.org/10.1007/s11814-010-0322-4
- Y. Srisuwan, Y. Baimark and P. Srihanam, Particul. Sci. Technol., 35, 387 (2017); https://doi.org/10.1080/02726351.2016.1163301
- J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu, X. Chen, B. Chu, X. Guo, J. Xu, H. Cheng, C.C. Han and S. Kuga, Macromolecules, 41, 9345 (2008); https://doi.org/10.1021/ma801110g
- J. Yang, J. Duan, L. Zhang, B. Lindman, H. Edlund and M. Norgren, Cellulose, 23, 3105 (2016); https://doi.org/10.1007/s10570-016-1029-4
- H. Jin, C. Zha and L. Gu, Carbohydr. Res., 342, 851 (2007); https://doi.org/10.1016/j.carres.2006.12.023
- L. Alves, B. Medronho, F.E. Antunes, D. Topgaard and B. Lindman, Carbohydr. Polym., 151, 707 (2016); https://doi.org/10.1016/j.carbpol.2016.06.015
- D.J.G.P. van Osch, L.J.B.M. Kollau, A. van den Bruinhorst, S. Asikainen, M.A.A. Rocha and M.C. Kroon, Phys. Chem. Chem. Phys., 19, 2636 (2017); https://doi.org/10.1039/C6CP07499E
- S.K. Wong, J., Supramaniam, T.W. Wong, A. Soottitantawat, B.T. Tey, U.R. Ruktanonchai and S.Y. Tang, Carbohydr. Res., 504, 108336 (2021); https://doi.org/10.1016/j.carres.2021.108336
- M. Lassoued, F. Crispino and E. Loranger, Carbohydr. Polym., 254, 117411 (2021); https://doi.org/10.1016/j.carbpol.2020.117411
- S. Dimida, C. Demitri, V.M. De Benedictis, F. Scalera, F. Gervaso and A. Sannino, J. Appl. Polym. Sci., 132, 42256 (2015); https://doi.org/10.1002/app.42256
- L.-T. Lee, H.-R. Chien and C.-T. Yang, J. Polym. Res., 23, 1 (2016); https://doi.org/10.1007/s10965-015-0892-2
- S.L. DeGeer, L. Wang, G.N. Hill, M. Singh, S.F. Bilgili and C.L. Bratcher, Meat Sci., 118, 28 (2016); https://doi.org/10.1016/j.meatsci.2016.03.008
- T.F.M. Moreira, A. de Oliveira, T.B.V. da Silva, A.R. Dos Santos, O.H. Gonçalves, R.S. Gonzalez, A.A. Droval and F.V. Leimann, LWT Food Technol., 103, 69 (2019); https://doi.org/10.1016/j.lwt.2018.12.040
- S. Acharya, Y. Hu, H. Moussa and N. Abidi, J. Appl. Polym. Sci., 134, 44871 (2017); https://doi.org/10.1002/app.44871
- W. Thongsomboon, Y. Baimark and P. Srihanam, Polymers, 15, 3190 (2023); https://doi.org/10.3390/polym15153190
- Y. Baimark, M. Srisa-ard and P. Srihanam, Express Polym. Lett., 4, 781 (2010); https://doi.org/10.3144/expresspolymlett.2010.94
- T. Imsombut, M. Srisa-ard, P. Srihanam and Y. Baimark, E-Polymers, 11, 88 (2011); https://doi.org/10.1515/epoly.2011.11.1.936
References
X. Ma, Y. Liu, L. Fan and W. Yan, Carbohydr. Polym., 252, 117169 (2021); https://doi.org/10.1016/j.carbpol.2020.117169
M. Saifullah, M.R.I. Shishir, R. Ferdowsi, M.R. Tanver Rahman and Q. Van Vuong, Trends Food Sci. Technol., 86, 230 (2019); https://doi.org/10.1016/j.tifs.2019.02.030
C.C. Berton-Carabin and K. Schroën, Annu. Rev. Food Sci. Technol., 6, 263 (2015); https://doi.org/10.1146/annurev-food-081114-110822
T. Nicolai and B. Murray, Food Hydrocoll., 68, 157 (2017); https://doi.org/10.1016/j.foodhyd.2016.08.036
A. Sakar and E. Dickinson, Curr. Opin. Colloid Interface Sci., 49, 69 (2020); https://doi.org/10.1016/j.cocis.2020.04.004
Y. Wang, X. Li, T. Li, Y. Wang, J. Jiang, X. Zhang, J. Huang, B. Xia, H.C. Shum, Z. Yang and W. Dong, Food Hydrocoll., 134, 108055 (2023); https://doi.org/10.1016/j.foodhyd.2022.108055
J. Xiao, Y. Li and Q. Huang, Trends Food Sci. Technol., 55, 48 (2016); https://doi.org/10.1016/j.tifs.2016.05.010
X. Li and R. de Vries, Curr. Opin. Food Sci., 21, 51 (2018); https://doi.org/10.1016/j.cofs.2018.05.012
E.F. Ribeiro, P. Morell, V.R. Nicoletti, A. Quiles and I. Hernando, Food Hydrocoll., 119, 106839 (2021); https://doi.org/10.1016/j.foodhyd.2021.106839
J. Feng, C.C. Berton-Carabin, V. Fogliano and K. Schroën, Trends Food Sci. Technol., 121, 129 (2022); https://doi.org/10.1016/j.tifs.2022.02.008
J. Buchert, D. Ercili Cura, H. Ma, C. Gasparetti, E. Monogioudi, G. Faccio, M. Mattinen, H. Boer, R. Partanen, E. Selinheimo, R. Lantto and K. Kruus, Annu. Rev. Food Sci. Technol., 1, 113 (2010); https://doi.org/10.1146/annurev.food.080708.100841
M. El Achaby, Z. Kassab, A. Barakat and A. Aboulkas, Ind. Crops Prod., 112, 499 (2018); https://doi.org/10.1016/j.indcrop.2017.12.049
A. Takegawa, M. Murakami, Y. Kaneko and J. Kadokawa, Carbohydr. Polym., 79, 85 (2010); https://doi.org/10.1016/j.carbpol.2009.07.030
K.L. Pickering, M.G.A. Efendy and T.M. Le, Compos., Part A Appl. Sci. Manuf., 83, 98 (2016); https://doi.org/10.1016/j.compositesa.2015.08.038
S. Wang, A. Lu and L. Zhang, Prog. Polym. Sci., 53, 169 (2016); https://doi.org/10.1016/j.progpolymsci.2015.07.003
A. Rajeswari, E.J.S. Christy, E. Swathi and A. Pius, J. Environ. Chem. Ecotoxicol, 2, 107 (2020); https://doi.org/10.1016/j.enceco.2020.07.003
S.J. Eichhorn, A. Etale, J. Wang, L.A. Berglund, Y. Li, Y. Cai, C. Chen, E.D. Cranston, M.A. Johns, Z. Fang, G. Li, L. Hu, M. Khandelwal, K.-Y. Lee, K. Oksman, S. Pinitsoontorn, F. Quero, A. Sebastian, M.M. Titirici, Z. Xu, S. Vignolini and B. Frka-Petesic, J. Mater. Sci., 57, 5697 (2022); https://doi.org/10.1007/s10853-022-06903-8
B. Peng, Z. Yao, X. Wang, M. Crombeen, D.G. Sweeney and K.C. Tam, Energy Environ., 5, 37 (2019); https://doi.org/10.1016/j.gee.2019.09.003
D. Zhao, J. Huang, Y. Zhong, K. Li, L. Zhang and J. Cai, Adv. Funct. Mater., 26, 6279 (2016); https://doi.org/10.1002/adfm.201601645
N. Song, D. Jiao, S. Cui, X. Hou, P. Ding and L. Shi, ACS Appl. Mater. Interfaces, 9, 2924 (2017); https://doi.org/10.1021/acsami.6b11979
E. Kontturi, P. Laaksonen, M.B. Linder, Nonappa, A.H. Gröschel, O.J. Rojas and O. Ikkala, Adv. Mater., 30, 1703779 (2018); https://doi.org/10.1002/adma.201703779
X. Zhang, F. Lin, Q. Yuan, L. Zhu, C. Wang and S. Yang, Carbohydr. Polym., 215, 58 (2019); https://doi.org/10.1016/j.carbpol.2019.03.066
H. Sadeghifar, R. Venditti, J. Jur, R.E. Gorga and J.J. Pawlak, ACS Sustain. Chem. Eng., 5, 625 (2016); https://doi.org/10.1021/acssuschemeng.6b02003
S. Lopes, C. Afonso, I. Fernandes, M.-F. Barreiro, P. Costa and A.E. Rodrigues, Ind. Crops Prod., 139, 111407 (2019); https://doi.org/10.1016/j.indcrop.2019.05.057
M.A. Rabbi, M.M. Rahman, H. Minami, M.R. Habib and H. Ahmad, Carbohydr. Polym., 233, 115842 (2020); https://doi.org/10.1016/j.carbpol.2020.115842
A.E. Blok, D.P. Bolhuis, K.P. Velikov and M. Stieger, Food Hydrocoll., 138, 108398 (2023); https://doi.org/10.1016/j.foodhyd.2022.108398
A.K.M. Nayab-Ul-Hossain, S.K. Sela, S.M.M. Alam, M.N. Hassan, J. Sarkar, C.M. Ahmed, S. Sadman, R.M. Hridoy, N. Mohsin, M.B. Hossain and S. Mia, Res. Green Sustain. Chem., 6, 100351 (2023); https://doi.org/10.1016/j.crgsc.2022.100351
J. Lan, J. Chen, R. Zhu, C. Lin, X. Ma and S. Cao, Int. J. Biol. Macromol., 231, 123587 (2023); https://doi.org/10.1016/j.ijbiomac.2023.123587
T.-T. Cao and Y.-Q. Zhang, Mater. Sci. Eng. C, 61, 940 (2016); https://doi.org/10.1016/j.msec.2015.12.082
M.C. Arango, Y. Montoya, M.S. Peresin, J. Bustamante and C. Álvarez-López, Int. J. Polym. Mater., 70, 1115 (2021); https://doi.org/10.1080/00914037.2020.1785454
C. Yang, L. Yao and L. Zhang, Smart Mater. Med., 4, 447 (2023); https://doi.org/10.1016/j.smaim.2023.01.003
D. Hu, T. Li, Z. Xu, D. Liu, M. Yang and L. Zhu, Acta Biomater., 74, 385 (2018); https://doi.org/10.1016/j.actbio.2018.05.024
C. Vepari and D.L. Kaplan, Prog. Polym. Sci., 32, 991 (2007); https://doi.org/10.1016/j.progpolymsci.2007.05.013
S.U.D. Wani, S.P. Gautam, Z.L. Qadrie and H. Gangadharappa, Int. J. Biol. Macromol., 163, 2145 (2020); https://doi.org/10.1016/j.ijbiomac.2020.09.057
Y. Li, L. Yao, L. Zhang, Y. Zhang, T. Zheng, L. Liu and L. Zhang, Food Chem., 355, 129479 (2021); https://doi.org/10.1016/j.foodchem.2021.129479
P. Srihanam, Y. Srisuwan, T. Imsombut and Y. Baimark, Korean J. Chem. Eng., 28, 293 (2011); https://doi.org/10.1007/s11814-010-0322-4
Y. Srisuwan, Y. Baimark and P. Srihanam, Particul. Sci. Technol., 35, 387 (2017); https://doi.org/10.1080/02726351.2016.1163301
J. Cai, L. Zhang, S. Liu, Y. Liu, X. Xu, X. Chen, B. Chu, X. Guo, J. Xu, H. Cheng, C.C. Han and S. Kuga, Macromolecules, 41, 9345 (2008); https://doi.org/10.1021/ma801110g
J. Yang, J. Duan, L. Zhang, B. Lindman, H. Edlund and M. Norgren, Cellulose, 23, 3105 (2016); https://doi.org/10.1007/s10570-016-1029-4
H. Jin, C. Zha and L. Gu, Carbohydr. Res., 342, 851 (2007); https://doi.org/10.1016/j.carres.2006.12.023
L. Alves, B. Medronho, F.E. Antunes, D. Topgaard and B. Lindman, Carbohydr. Polym., 151, 707 (2016); https://doi.org/10.1016/j.carbpol.2016.06.015
D.J.G.P. van Osch, L.J.B.M. Kollau, A. van den Bruinhorst, S. Asikainen, M.A.A. Rocha and M.C. Kroon, Phys. Chem. Chem. Phys., 19, 2636 (2017); https://doi.org/10.1039/C6CP07499E
S.K. Wong, J., Supramaniam, T.W. Wong, A. Soottitantawat, B.T. Tey, U.R. Ruktanonchai and S.Y. Tang, Carbohydr. Res., 504, 108336 (2021); https://doi.org/10.1016/j.carres.2021.108336
M. Lassoued, F. Crispino and E. Loranger, Carbohydr. Polym., 254, 117411 (2021); https://doi.org/10.1016/j.carbpol.2020.117411
S. Dimida, C. Demitri, V.M. De Benedictis, F. Scalera, F. Gervaso and A. Sannino, J. Appl. Polym. Sci., 132, 42256 (2015); https://doi.org/10.1002/app.42256
L.-T. Lee, H.-R. Chien and C.-T. Yang, J. Polym. Res., 23, 1 (2016); https://doi.org/10.1007/s10965-015-0892-2
S.L. DeGeer, L. Wang, G.N. Hill, M. Singh, S.F. Bilgili and C.L. Bratcher, Meat Sci., 118, 28 (2016); https://doi.org/10.1016/j.meatsci.2016.03.008
T.F.M. Moreira, A. de Oliveira, T.B.V. da Silva, A.R. Dos Santos, O.H. Gonçalves, R.S. Gonzalez, A.A. Droval and F.V. Leimann, LWT Food Technol., 103, 69 (2019); https://doi.org/10.1016/j.lwt.2018.12.040
S. Acharya, Y. Hu, H. Moussa and N. Abidi, J. Appl. Polym. Sci., 134, 44871 (2017); https://doi.org/10.1002/app.44871
W. Thongsomboon, Y. Baimark and P. Srihanam, Polymers, 15, 3190 (2023); https://doi.org/10.3390/polym15153190
Y. Baimark, M. Srisa-ard and P. Srihanam, Express Polym. Lett., 4, 781 (2010); https://doi.org/10.3144/expresspolymlett.2010.94
T. Imsombut, M. Srisa-ard, P. Srihanam and Y. Baimark, E-Polymers, 11, 88 (2011); https://doi.org/10.1515/epoly.2011.11.1.936