Copyright (c) 2023 S.N. MANJULA, M. CHANDRASEKHAR, M.R. ANIL KUMAR, N. RAGHAVENDRA, C.R. RAVIKUMAR, H.C. ANANDA MURTHY, H. NAGABHUSHANA
This work is licensed under a Creative Commons Attribution 4.0 International License.
MgAl2O4:Ho3+ Nanophosphors: Electrochemical Sensor, Photoluminescence and Photocatalytic Applications
Corresponding Author(s) : C.R. RAVIKUMAR
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
Ho3+-doped MgAl2O4 nanophosphors (1-11 mol%) was synthesised via solution combustion method using oxalyl dihydrazide (ODH) as fuel. The findings revealed a range of band gap energies (Eg) between 4.86 and 5.42 eV. It was confirmed that these values correspond extremely well with the experimental data using the DFT approach. The Ho3+ ions in the host undergo f-f transitions that are triggered at 406 nm and as a result, exhibit discrete photoluminescence emission peaks between 406 and 605 nm. Enhanced MgAl2O4 have CIE coordinates from orange-red to yellow region and 97% colour purity. Photocatalytic properties of nanophosphors under UV light led to the discovery that a rapid orange-red dye is activated at 493 nm. Removal of fast orange red (F-OR) dye using the new photocatalysts and MgAl2O4:Ho3+ nanophosphors has been demonstrated. The investigation showed that 89.02% of the dye lost its colour after being exposed to radiation for 120 min. The modified MgAl2O4:Ho3+ carbon paste electrode used in the cyclic voltametric (CV) technique for lead pollution detection. Based on their electrochemical performance, it is concluded that MgAl2O4:Ho3+ nanophosphors are a viable material for lead detecting electrodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Wrzyszcz, W. Miœta, D. Hreniak, W. Strek, M. Zawadzki and H. Grabowska, J. Alloys Compd., 341, 358 (2002); https://doi.org/10.1016/S0925-8388(02)00037-3
- L.H. Brixner and P.A. Flournoy, J. Electrochem. Soc., 112, 303 (1965); https://doi.org/10.1149/1.2423528
- L.D. Merkle, A. Pinto, H.R. Verdún and B. McIntosh, Appl. Phys. Lett., 61, 2386 (1992); https://doi.org/10.1063/1.108172
- H.Y. Lin, W.F. Chang and S.Y. Chu, J. Lumin., 133, 194 (2013); https://doi.org/10.1016/j.jlumin.2011.12.034
- J. Zhao, C. Guo, J. Yu and R. Yu, Opt. Laser Technol., 45, 62 (2013); https://doi.org/10.1016/j.optlastec.2012.07.032
- V. Singh, M.D.M. Haque and D.-K. Kim, Bull. Korean Chem. Soc., 28, 2477 (2007); https://doi.org/10.5012/bkcs.2007.28.12.2477
- O. Padmaraj, M. Venkateswarlu and N. Satyanarayana, Ceram. Int., 41, 3178 (2015); https://doi.org/10.1016/j.ceramint.2014.10.169
- S.M. Hosseini, Phys. Stat. Sol. (b), 245, 2800 (2008); https://doi.org/10.1002/pssb.200844142
- I. Omkaram and S. Buddhudu, Opt. Mater., 32, 8 (2009); https://doi.org/10.1016/j.optmat.2009.05.010
- I. Omkaram, B. Vengala Rao and S. Buddhudu, J. Alloys Compd., 474, 565 (2009); https://doi.org/10.1016/j.jallcom.2008.06.140
- I. Ganesh, Int. Mater. Rev., 58, 63 (2013); https://doi.org/10.1179/1743280412Y.0000000001
- Q. Sai, C. Xia, H. Rao, X. Xu, G. Zhou and P. Xu, J. Lumin., 131, 2359 (2011); https://doi.org/10.1016/j.jlumin.2011.05.046
- P. Gluchowski, R. Pazik, D. Hreniak and W. Strêk, Chem. Phys., 358, 52 (2009); https://doi.org/10.1016/j.chemphys.2008.12.018
- P. Gluchowski and W. Strek, Mater. Chem. Phys., 140, 222 (2013); https://doi.org/10.1016/j.matchemphys.2013.03.025
- W.A.I. Tabaza, H.C. Swart and R.E. Kroon, J. Lumin., 148, 192 (2014); https://doi.org/10.1016/j.jlumin.2013.12.018
- V. Singh, R.P.S. Chakradhar, J.L. Rao and D.K. Kim, J. Solid State Chem., 180, 2067 (2007); https://doi.org/10.1016/j.jssc.2007.04.030
- A. Jouini, A. Yoshikawa, Y. Guyot, A. Brenier, T. Fukuda and G. Boulon, Opt. Mater., 30, 47 (2007); https://doi.org/10.1016/j.optmat.2006.11.027
- R. Sakai, T. Katsumata, S. Komuro and T. Morikawa, J. Lumin., 85, 149 (1999); https://doi.org/10.1016/S0022-2313(99)00061-7
- I. Omkaram, G. Seeta Rama Raju and S. Buddhudu, J. Phys. Chem. Solids, 69, 2066 (2008); https://doi.org/10.1016/j.jpcs.2008.03.005
- A.S. Maia, R. Stefani, C.A. Kodaira, C.F.C. Felinto, E.E.S. Teotonio and H.F. Brito, Opt. Mater., 31, 440 (2008); https://doi.org/10.1016/j.optmat.2008.06.017
- Y. Lu, J. Wang, L. He, C. Hao, F. Wang and J. Zhang, Mater. Res. Express, 9, 065009 (2022); https://doi.org/10.1088/2053-1591/ac7b72
- R.J. Wiglusz and T. Grzyb, Opt. Mater., 33, 1506 (2011); https://doi.org/10.1016/j.optmat.2011.04.020
- Y. Lu, J. Wang, Z.X. Shi, L.J. Dai, H.M. Zhang, Z.T. Sun and Y.F. Liu, Chinese J. Inorg. Chem., 36, 688 (2020).
- Q.U. Ain, B. Ismail, A.M. Khan, R.A. Khan, F. Shah, Hafiz-Ur Rehman and F. Shahid, Semicond. Sci. Technol., 36, 125010 (2021); https://doi.org/10.1088/1361-6641/ac2750
- S. Ashwini, S.C. Prashantha, R. Naik, Y.V. Naik, H. Nagabhushana and K.N. Narasimhamurthy, J. Sci. Adv. Mater. Devices, 4, 531 (2019); https://doi.org/10.1016/j.jsamd.2019.09.001
- C. Pratapkumar, S.C. Prashantha, H. Nagabhushana, M.R. Anilkumar, C.R. Ravikumar, H.P. Nagaswarupa and D.M. Jnaneshwara, J. Alloys Compd., 728, 1124 (2017); https://doi.org/10.1016/j.jallcom.2017.09.058
- Z. Wang, S. jiao, Y. Xu, Q. Zhang, Y. Chen, G. Pang and S. Feng, J. Lumin., 211, 108 (2019); https://doi.org/10.1016/j.jlumin.2019.03.008
- Z.G. Lei, D.W. Meng, Z.X. Gao, X.L. Zhang, Q.X. Yang and Y.Q. Wang, J. Mater. Sci. Mater. Electron., 27, 1840 (2016); https://doi.org/10.1007/s10854-015-3962-7
- S. Cizauskaite, G. Spakauskaite, A. Beganskiene and A. Kareiva, Chemija, 17, 40 (2006).
- G.H. Du, Z.L. Liu, X. Xia, Q. Chu and S.M. Zhang, J. Sol-Gel. Sci., 39, 285 (2006); https://doi.org/10.1007/s10971-006-7780-5
- M. Chroma, J. Pinkas, I. Pakutinskiene, A. Beganskiene and A. Kareiva, Ceram. Int., 31, 1123 (2005); https://doi.org/10.1016/j.ceramint.2004.11.012
- B. Schrader, Infrared and Raman Spectroscopy. Methods and Applications, VCH, Weinheim (1995).
- H. Shahbazi, H. Shokrollahi and A. Alhaji, J. Alloys Compd., 712, 732 (2017); https://doi.org/10.1016/j.jallcom.2017.04.042
- W. Nantharak, W. Wattanathana, W. Klysubun, T. Rimpongpisarn, C. Veranitisagul, N. Koonsaeng and A. Laobuthee, J. Alloys Compd., 701, 1019 (2017); https://doi.org/10.1016/j.jallcom.2017.01.090
- S. Sanjabi and A. Obeydavi, J. Alloys Compd., 645, 535 (2015); https://doi.org/10.1016/j.jallcom.2015.05.107
- R. Naik, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa and K.M. Girish, J. Alloys Compd., 682, 815 (2016); https://doi.org/10.1016/j.jallcom.2016.05.037
- G. Rani, Powder Technol., 312, 354 (2017); https://doi.org/10.1016/j.powtec.2017.02.040
- S.K. Sampath, D.G. Kanhere and R. Pandey, J. Phys. Condens. Matter, 113, 635 (1999); https://doi.org/10.1088/0953-8984/11/18/301
- Q. Bai, P. Li, Z. Wang, S. Xu, T. Li, Z. Yang and Z. Xu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 199, 179 (2018); https://doi.org/10.1016/j.saa.2018.03.065
- M.R.A. Kumar, B. Abebe, H.P. Nagaswarupa, H.C.A. Murthy, C.R. Ravikumar and F.K. Sabir, Sci. Rep., 10, 1249 (2020); https://doi.org/10.1038/s41598-020-58110-7
- B. Shruthi, B.J. Madhu, V.B. Raju, S. Vynatheya, B.V. Devi, G.V. Jayashree and C.R. Ravikumar, J. Sci. Adv. Mater. Devices, 2, 93 (2017); https://doi.org/10.1016/j.jsamd.2016.12.002
- B. Avinash, C.R. Ravikumar, M.R.A. Kumar, H.P. Nagaswarupa, M.S. Santosh, A.S. Bhatt and D. Kuznetsov, J. Phys. Chem. Solids, 134, 193 (2019); https://doi.org/10.1016/j.jpcs.2019.06.012
References
J. Wrzyszcz, W. Miœta, D. Hreniak, W. Strek, M. Zawadzki and H. Grabowska, J. Alloys Compd., 341, 358 (2002); https://doi.org/10.1016/S0925-8388(02)00037-3
L.H. Brixner and P.A. Flournoy, J. Electrochem. Soc., 112, 303 (1965); https://doi.org/10.1149/1.2423528
L.D. Merkle, A. Pinto, H.R. Verdún and B. McIntosh, Appl. Phys. Lett., 61, 2386 (1992); https://doi.org/10.1063/1.108172
H.Y. Lin, W.F. Chang and S.Y. Chu, J. Lumin., 133, 194 (2013); https://doi.org/10.1016/j.jlumin.2011.12.034
J. Zhao, C. Guo, J. Yu and R. Yu, Opt. Laser Technol., 45, 62 (2013); https://doi.org/10.1016/j.optlastec.2012.07.032
V. Singh, M.D.M. Haque and D.-K. Kim, Bull. Korean Chem. Soc., 28, 2477 (2007); https://doi.org/10.5012/bkcs.2007.28.12.2477
O. Padmaraj, M. Venkateswarlu and N. Satyanarayana, Ceram. Int., 41, 3178 (2015); https://doi.org/10.1016/j.ceramint.2014.10.169
S.M. Hosseini, Phys. Stat. Sol. (b), 245, 2800 (2008); https://doi.org/10.1002/pssb.200844142
I. Omkaram and S. Buddhudu, Opt. Mater., 32, 8 (2009); https://doi.org/10.1016/j.optmat.2009.05.010
I. Omkaram, B. Vengala Rao and S. Buddhudu, J. Alloys Compd., 474, 565 (2009); https://doi.org/10.1016/j.jallcom.2008.06.140
I. Ganesh, Int. Mater. Rev., 58, 63 (2013); https://doi.org/10.1179/1743280412Y.0000000001
Q. Sai, C. Xia, H. Rao, X. Xu, G. Zhou and P. Xu, J. Lumin., 131, 2359 (2011); https://doi.org/10.1016/j.jlumin.2011.05.046
P. Gluchowski, R. Pazik, D. Hreniak and W. Strêk, Chem. Phys., 358, 52 (2009); https://doi.org/10.1016/j.chemphys.2008.12.018
P. Gluchowski and W. Strek, Mater. Chem. Phys., 140, 222 (2013); https://doi.org/10.1016/j.matchemphys.2013.03.025
W.A.I. Tabaza, H.C. Swart and R.E. Kroon, J. Lumin., 148, 192 (2014); https://doi.org/10.1016/j.jlumin.2013.12.018
V. Singh, R.P.S. Chakradhar, J.L. Rao and D.K. Kim, J. Solid State Chem., 180, 2067 (2007); https://doi.org/10.1016/j.jssc.2007.04.030
A. Jouini, A. Yoshikawa, Y. Guyot, A. Brenier, T. Fukuda and G. Boulon, Opt. Mater., 30, 47 (2007); https://doi.org/10.1016/j.optmat.2006.11.027
R. Sakai, T. Katsumata, S. Komuro and T. Morikawa, J. Lumin., 85, 149 (1999); https://doi.org/10.1016/S0022-2313(99)00061-7
I. Omkaram, G. Seeta Rama Raju and S. Buddhudu, J. Phys. Chem. Solids, 69, 2066 (2008); https://doi.org/10.1016/j.jpcs.2008.03.005
A.S. Maia, R. Stefani, C.A. Kodaira, C.F.C. Felinto, E.E.S. Teotonio and H.F. Brito, Opt. Mater., 31, 440 (2008); https://doi.org/10.1016/j.optmat.2008.06.017
Y. Lu, J. Wang, L. He, C. Hao, F. Wang and J. Zhang, Mater. Res. Express, 9, 065009 (2022); https://doi.org/10.1088/2053-1591/ac7b72
R.J. Wiglusz and T. Grzyb, Opt. Mater., 33, 1506 (2011); https://doi.org/10.1016/j.optmat.2011.04.020
Y. Lu, J. Wang, Z.X. Shi, L.J. Dai, H.M. Zhang, Z.T. Sun and Y.F. Liu, Chinese J. Inorg. Chem., 36, 688 (2020).
Q.U. Ain, B. Ismail, A.M. Khan, R.A. Khan, F. Shah, Hafiz-Ur Rehman and F. Shahid, Semicond. Sci. Technol., 36, 125010 (2021); https://doi.org/10.1088/1361-6641/ac2750
S. Ashwini, S.C. Prashantha, R. Naik, Y.V. Naik, H. Nagabhushana and K.N. Narasimhamurthy, J. Sci. Adv. Mater. Devices, 4, 531 (2019); https://doi.org/10.1016/j.jsamd.2019.09.001
C. Pratapkumar, S.C. Prashantha, H. Nagabhushana, M.R. Anilkumar, C.R. Ravikumar, H.P. Nagaswarupa and D.M. Jnaneshwara, J. Alloys Compd., 728, 1124 (2017); https://doi.org/10.1016/j.jallcom.2017.09.058
Z. Wang, S. jiao, Y. Xu, Q. Zhang, Y. Chen, G. Pang and S. Feng, J. Lumin., 211, 108 (2019); https://doi.org/10.1016/j.jlumin.2019.03.008
Z.G. Lei, D.W. Meng, Z.X. Gao, X.L. Zhang, Q.X. Yang and Y.Q. Wang, J. Mater. Sci. Mater. Electron., 27, 1840 (2016); https://doi.org/10.1007/s10854-015-3962-7
S. Cizauskaite, G. Spakauskaite, A. Beganskiene and A. Kareiva, Chemija, 17, 40 (2006).
G.H. Du, Z.L. Liu, X. Xia, Q. Chu and S.M. Zhang, J. Sol-Gel. Sci., 39, 285 (2006); https://doi.org/10.1007/s10971-006-7780-5
M. Chroma, J. Pinkas, I. Pakutinskiene, A. Beganskiene and A. Kareiva, Ceram. Int., 31, 1123 (2005); https://doi.org/10.1016/j.ceramint.2004.11.012
B. Schrader, Infrared and Raman Spectroscopy. Methods and Applications, VCH, Weinheim (1995).
H. Shahbazi, H. Shokrollahi and A. Alhaji, J. Alloys Compd., 712, 732 (2017); https://doi.org/10.1016/j.jallcom.2017.04.042
W. Nantharak, W. Wattanathana, W. Klysubun, T. Rimpongpisarn, C. Veranitisagul, N. Koonsaeng and A. Laobuthee, J. Alloys Compd., 701, 1019 (2017); https://doi.org/10.1016/j.jallcom.2017.01.090
S. Sanjabi and A. Obeydavi, J. Alloys Compd., 645, 535 (2015); https://doi.org/10.1016/j.jallcom.2015.05.107
R. Naik, S.C. Prashantha, H. Nagabhushana, S.C. Sharma, H.P. Nagaswarupa and K.M. Girish, J. Alloys Compd., 682, 815 (2016); https://doi.org/10.1016/j.jallcom.2016.05.037
G. Rani, Powder Technol., 312, 354 (2017); https://doi.org/10.1016/j.powtec.2017.02.040
S.K. Sampath, D.G. Kanhere and R. Pandey, J. Phys. Condens. Matter, 113, 635 (1999); https://doi.org/10.1088/0953-8984/11/18/301
Q. Bai, P. Li, Z. Wang, S. Xu, T. Li, Z. Yang and Z. Xu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 199, 179 (2018); https://doi.org/10.1016/j.saa.2018.03.065
M.R.A. Kumar, B. Abebe, H.P. Nagaswarupa, H.C.A. Murthy, C.R. Ravikumar and F.K. Sabir, Sci. Rep., 10, 1249 (2020); https://doi.org/10.1038/s41598-020-58110-7
B. Shruthi, B.J. Madhu, V.B. Raju, S. Vynatheya, B.V. Devi, G.V. Jayashree and C.R. Ravikumar, J. Sci. Adv. Mater. Devices, 2, 93 (2017); https://doi.org/10.1016/j.jsamd.2016.12.002
B. Avinash, C.R. Ravikumar, M.R.A. Kumar, H.P. Nagaswarupa, M.S. Santosh, A.S. Bhatt and D. Kuznetsov, J. Phys. Chem. Solids, 134, 193 (2019); https://doi.org/10.1016/j.jpcs.2019.06.012