Copyright (c) 2023 Dr. Rajesh K M
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis and Characterization of Crystalline Graphene-Titania Nanocomposites as Efficient Photocatalysts for Pollution Control
Corresponding Author(s) : Rajesh K M
Asian Journal of Chemistry,
Vol. 35 No. 11 (2023): Vol 35 Issue 11, 2023
Abstract
Titanium dioxide (TiO2) is reported to exhibit high degradation efficiency to degrade organic water pollutants without any decomposition thereby acting as an excellent photocatalyst. The catalytic performance of pure TiO2 (T1) can even be enhanced by incorporating graphene forming graphene-TiO2 (GT1) nanocomposite. We suggest, a modified sol-gel method for synthesizing T1 and GT1 nanocomposites and they were characterized by XRD, FTIR, UV-visible spectra, TEM and XPS techniques. The removal efficiency of organic dye, methylene blue, was investigated by the photocatalytic degradation efficiency of GT1 nanocomposite under daylight irradiation. Degradation studies revealed that more than 90% methylene blue dye removal was achieved with 3 mg GT1 with an initial concentration of 10-4 M under an irradiation time of 1 h.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N. Morin-Crini, E. Lichtfouse, G. Liu, V. Balaram, A.R.L. Ribeiro, Z. Lu, F. Stock, E. Carmona, M.R. Teixeira, L.A. Picos-Corrales, J.C. Moreno-Piraján, L. Giraldo, C. Li, A. Pandey, D. Hocquet, G. Torri and G. Crini, Environ. Chem. Lett., 20, 2311 (2022); https://doi.org/10.1007/s10311-022-01447-4
- M.T.H. Van Vliet, E.R. Jones, M. Florke, W.H.P. Franssen, N. Hanasaki, Y. Wada and J.R. Yearsley, Environ. Res. Lett., 16, 024020 (2021); https://doi.org/10.1088/1748-9326/abbfc3
- P. Shandilya, P. Raizada and P. Singh, Photocatalysis, 57, 119 (2021); https://doi.org/10.1007/978-3-030-54723-3
- N. Bhattacharjee, I. Som, R. Saha and S. Mondal, Int. J. Environ. Anal. Chem., (2022); https://doi.org/10.1080/03067319.2021.2022130
- S. Khanna, P. Marathey, S. Paneliya, P. Vinchhi, R. Chaudhari and J. Vora, Int. J. Hydrogen Energy, 47, 41698 (2022); https://doi.org/10.1016/j.ijhydene.2022.02.050
- P. Muthirulan, C. Nirmala Devi and M. Meenakshi Sundaram, Mater. Sci. Semicond. Process., 25, 219 (2014); https://doi.org/10.1016/j.mssp.2013.11.036
- B.Y.S. Chang, N.M. Huang, M. Nor An’amt, A.R. Marlinda, Y. Norazriena, M.R. Muhamad, I. Harrison, H.N. Lim and C.C. Hua, Int. J. Nanomedicine, 2012, 3379 (2012); https://doi.org/10.2147/IJN.S28189
- J.P. Jeon, D.H. Kweon, B.J. Jang, M.J. Ju and J.B. Baek, Adv. Sustain. Syst., 4, 2000197 (2020); https://doi.org/10.1002/adsu.202000197
- R. Nawaz, C.F. Kait, H.Y. Chia, M.H. Isa and L.W. Huei, Environ. Technol. Innov., 19, 101007 (2020); https://doi.org/10.1016/j.eti.2020.101007
- N.R. Khalid, E. Ahmed, Z. Hong, L. Sana and M. Ahmed, Curr. Appl. Phys., 13, 659 (2013); https://doi.org/10.1016/j.cap.2012.11.003
- V. Stengl, S. Bakardjieva and N. Murafa, Mater. Chem. Phys., 114, 217 (2009); https://doi.org/10.1016/j.matchemphys.2008.09.025
- R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293, 269 (2001); https://doi.org/10.1126/science.1061051
- J.M. Herrmann, Catal. Today, 53, 115 (1999); https://doi.org/10.1016/S0920-5861(99)00107-8
- J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li and N. Wu, J. Am. Chem. Soc., 131, 12290 (2009); https://doi.org/10.1021/ja903781h
- D.N. Tafen, J. Wang, N.Q. Wu and J.P. Lewis, Appl. Phys. Lett., 94, 093101 (2009); https://doi.org/10.1063/1.3093820
- S. Kohtani, S. Makino, A. Kudo, K. Tokumura, Y. Ishigaki, T. Matsunaga, O. Nikaido, K. Hayakawa and R. Nakagaki, Chem. Lett., 31, 660 (2002); https://doi.org/10.1246/cl.2002.660
- Y. Yu, J.C. Yu, C.Y. Chan, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge and P.K. Wong, Appl. Catal. B, 61, 1 (2005); https://doi.org/10.1016/j.apcatb.2005.03.008
- X. Liu, Y. Yang, H. Li, Z. Yang and Y. Fang, Chem. Eng. J., 408, 127259 (2021); https://doi.org/10.1016/j.cej.2020.127259
- S. Ali, A. Razzaq and S.-I. In, Catal. Today, 335, 39 (2019); https://doi.org/10.1016/j.cattod.2018.12.003
- X.-Y. Zhang, H.-P. Li, X.-L. Cui and Y. Lin, J. Mater. Chem., 20, 2801 (2010); https://doi.org/10.1039/b917240h
- M.Q. Yang, N. Zhang and Y.J. Xu, ACS Appl. Mater. Interfaces, 5, 1156 (2013); https://doi.org/10.1021/am3029798
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034
- S. Linley, Y.Y. Liu, C.J. Ptacek, D.W. Blowes and F.X. Gu, ACS Appl. Mater. Interfaces, 6, 4658 (2014); https://doi.org/10.1021/am4039272
- Z. Wang, M. Zhang, Z. Song, M. Yaseen, Z. Huang, A. Wang, Z. Guisheng and S. Shao, J. Colloid Interface Sci., 624, 88 (2022); https://doi.org/10.1016/j.jcis.2022.05.094
- I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L.A. Shah, T. Shah and I. Khan, Water, 14, 242 (2022); https://doi.org/10.3390/w14020242
- S.A. Kidd, P.A. Lancaster, J.C. Anderson, A. Boogert, C.C.Fisher, R. Robertson and D.M. Wass, Prenat. Diagn., 16, 39 (1996); https://doi.org/10.1002/(SICI)1097-0223(199601)16:1<39::AID-PD789>3.0.CO;2-P
- G. Rajivgandhi, V. Rtv, R. Nandhakumar, S. Murugan, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, K.F. Alanzi and W.-J. Li, Environ. Res., 199, 111322 (2021); https://doi.org/10.1016/j.envres.2021.111322
- R. Suresh, L. Gnanasekaran, S. Rajendran, M. Soto-Moscoso, W.-H. Chen, P.L. Show and K.S. Khoo, Environ. Technol. Innov., 31, 103149 (2023); https://doi.org/10.1016/j.eti.2023.103149
- Y. Hua, S. Wang, J. Xiao, C. Cui and C. Wang, RSC Adv., 7, 28979 (2017); https://doi.org/10.1039/C6RA23939K
- A. Pruna, Q. Shao, M. Kamruzzaman, Y.Y. Li, J.A. Zapien, D. Pullini, D. Busquets Mataix and A. Ruotolo, Appl. Surf. Sci., 392, 801 (2017); https://doi.org/10.1016/j.apsusc.2016.09.122
- R. Atchudan, T.N.J.I. Edison, S. Perumal, M. Shanmugam and Y.R. Lee, J. Photochem. Photobiol. Chem., 337, 100 (2017); https://doi.org/10.1016/j.jphotochem.2017.01.021
- A. Pruna, Z. Wu, J. Zapien, Y. Li and A. Ruotolo, Appl. Surf. Sci., 441, 936 (2018); https://doi.org/10.1016/j.apsusc.2018.02.117
- H. Wang, Q. Shen, Z. You, Y. Su, Y. Yu, A. Babapour, F. Zhang, D. Cheng and H. Yang, Mater. Lett., 217, 143 (2018); https://doi.org/10.1016/j.matlet.2018.01.037
- H. Zhou, X. Yue, H. Lv, L. Kong, Z. Ji and X. Shen, Ceram. Int., 44, 7240 (2018); https://doi.org/10.1016/j.ceramint.2018.01.176
- B.K. Choi, W.K. Choi, S.J. Park and M.K. Seo, J. Nanosci. Nanotechnol., 18, 6075 (2018); https://doi.org/10.1166/jnn.2018.15616
- M.R.U.D. Biswas, B.S. Ho and W.C. Oh, Polym. Bull., 77, 4381 (2020); https://doi.org/10.1007/s00289-019-02973-y
- I. Ali, S.R. Kim, K. Park and J.O. Kim, Opt. Mater. Express, 7, 1535 (2017); https://doi.org/10.1364/OME.7.001535
- A. Datcu, M. Mendoza, A.P. del Pino, C. Logofatu, C. Luculescu and E. György, Catal. Today, 321-322, 81 (2019); https://doi.org/10.1016/j.cattod.2018.02.026
- R. Atchudan, T.N.J. Immanuel Edison, S. Perumal, D. Karthikeyan and Y.R. Lee, J. Photochem. Photobiol. Chem., 333, 92 (2017); https://doi.org/10.1016/j.jphotochem.2016.10.021
- J. Ahmad, F.A. Sofi, O. Mehraj and K. Majid, Surf. Interfaces, 13, 186 (2018); https://doi.org/10.1016/j.surfin.2018.09.010
- S.A. Khan, Z. Arshad, S. Shahid, I. Arshad, K. Rizwan, M. Sher and U. Fatima, Compos., Part B Eng., 175, 107120 (2019); https://doi.org/10.1016/j.compositesb.2019.107120
- S. Gupta Chatterjee, S. Chatterjee, A.K. Ray and A.K. Chakraborty, Sens. Actuators B Chem., 221, 1170 (2015); https://doi.org/10.1016/j.snb.2015.07.070
- Y. Liang, H. Wang, H. Sanchez Casalongue, Z. Chen and H. Dai, Nano Res., 3, 701 (2010); https://doi.org/10.1007/s12274-010-0033-5
- C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu and Y. Feng, ACS Nano, 4, 6425 (2010); https://doi.org/10.1021/nn102130m
- R. Lakra, R. Kumar, P.K. Sahoo, D. Thatoi and A. Soam, Inorg. Chem. Commun., 133, 108929 (2021); https://doi.org/10.1016/j.inoche.2021.108929
- G. Williams, B. Seger and P.V. Kamat, ACS Nano, 2, 1487 (2008); https://doi.org/10.1021/nn800251f
- P. Wang, Y.M. Zhai, D.J. Wang and S.J. Dong, Nanoscale, 3, 1640 (2011); https://doi.org/10.1039/c0nr00714e
- C.C. Wang and J.Y. Ying, Chem. Mater., 11, 3113 (1999); https://doi.org/10.1021/cm990180f
- M. Keshmiri, M. Mohseni and T. Troczynski, Appl. Catal. B, 53, 209 (2004); https://doi.org/10.1016/j.apcatb.2004.05.016
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
- J.Y. Jang, M.S. Kim, H.M. Jeong and C.M. Shin, Compos. Sci. Technol., 69, 186 (2009); https://doi.org/10.1016/j.compscitech.2008.09.039
- G. Jiang, X. Zheng, Y. Wang, T. Li and X. Sun, Powder Technol., 207, 465 (2011); https://doi.org/10.1016/j.powtec.2010.11.029
- T.D. Nguyen-Phan, V.H. Pham, E.W. Shin, H.D. Pham, S. Kim, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 170, 226 (2011); https://doi.org/10.1016/j.cej.2011.03.060
- W. Fan, Q. Lai, Q. Zhang and Y. Wang, J. Phys. Chem. C, 115, 10694 (2011); https://doi.org/10.1021/jp2008804
- Y. Zhang, Z.R. Tang, X. Fu and Y.J. Xu, ACS Nano, 5, 7426 (2011); https://doi.org/10.1021/nn202519j
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, A. Slesarev, Z. Sun, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368
- G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, Carbon, 49, 2693 (2011); https://doi.org/10.1016/j.carbon.2011.02.059
- S. Sakthivel and H. Kisch, Angew. Chem. Int. Ed., 42, 4908 (2003); https://doi.org/10.1002/anie.200351577
- X.G. Gao, L.X. Cheng, W.S. Jiang, X.K. Li and F. Xing, Front Chem., 9, 615164 (2021); https://doi.org/10.3389/fchem.2021.615164
- N. Serpone, J. Phys. Chem. B, 110, 24287 (2006); https://doi.org/10.1021/jp065659r
- Y.Y. Wen, H.M. Ding and Y.K. Shan, Nanoscale, 3, 4411 (2011); https://doi.org/10.1039/c1nr10604j
- Z. Fu, S. Zhang and Z. Fu, Appl. Sci., 9, 3282 (2019); https://doi.org/10.3390/app9163282
- R. Kaveh, M. Mokhtarifar, M. Bagherzadeh, A. Lucotti, M.V. Diamanti and M.P. Pedeferri, Molecules, 25, 2996 (2020); https://doi.org/10.3390/molecules25132996
- H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); https://doi.org/10.1021/nn901221k
- X. Niu, W. Yan, H. Zhao and J. Yang, Appl. Surf. Sci., 440, 804 (2018); https://doi.org/10.1016/j.apsusc.2018.01.069
- N. Singh, S. Jana, G.P. Singh and R.K. Dey, Adv. Compos. Hybrid Mater., 3, 127 (2020); https://doi.org/10.1007/s42114-020-00140-w
- J. Li, S. Zhou, G.-B. Hong and C.-T. Chang, Chem. Eng. J., 219, 486 (2013); https://doi.org/10.1016/j.cej.2013.01.031
- R.T. Yunarti, T.N. Safitri, L.C.C. Dimonti, G. Aulia, M. Khalil and M. Ridwan, J. Phys. Chem. Solids, 160, 110357 (2022); https://doi.org/10.1016/j.jpcs.2021.110357
- X. Wang, S. Han, Q. Zhang, N. Zhang and D. Zhao, MATEC Web of Conf., 238, 03006 (2018); https://doi.org/10.1051/matecconf/201823803006
- N.T.V. Hoan, N.N. Minh, T.T.K. Nhi, N. Van Thang, V.A. Tuan, V.T. Nguyen, N.M. Thanh, N. Van Hung and D.Q. Khieu, J. Nanomater., 2020, 1 (2020); https://doi.org/10.1155/2020/4350125
- F.-E. Zirar, A. Anouar, N. Katir, I.A. Ichou and A. El Kadib, RSC Advances, 11, 28116 (2021); https://doi.org/10.1039/D1RA05275F
- E.K. Nejman, A. Wanag, J. Kapica-Kozar, L. Kowalczyk, B. Tryba, M. Zgrzebnicki, J. Przepiórski and A.W. Morawski, Catal. Today, 357, 630 (2020); https://doi.org/10.1016/j.cattod.2019.04.078
- V. Loryuenyong, J. Charoensuk, R. Charupongtawitch, A. Usakulwattana and A. Buasri, J. Nanosci. Nanotechnol., 16, 296 (2016); https://doi.org/10.1166/jnn.2016.11612
- J. Kaur and M. Kaur, Ceram. Int., 45, 8646 (2019); https://doi.org/10.1016/j.ceramint.2019.01.185
- D. Zhao, G. Sheng, C. Chen and X. Wang, Appl. Catal. B, 111-112, 303 (2012); https://doi.org/10.1016/j.apcatb.2011.10.012
- Y. Min, K. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen and Y.G. Zhang, Chem. Eng. J., 193-194, 203 (2012); https://doi.org/10.1016/j.cej.2012.04.047
- J.A. Park, B. Yang, J. Lee, I.G. Kim, J.H. Kim, J.W. Choi, H.D. Park, I.W. Nah and S.H. Lee, Chemosphere, 191, 738 (2018); https://doi.org/10.1016/j.chemosphere.2017.10.094
- X. Yin, H. Zhang, P. Xu, J. Han, J. Li and M. He, RSC Adv., 3, 18474 (2013); https://doi.org/10.1039/c3ra43403f
- C.H. Kim, B. Kim and K.S. Yang, Carbon, 50, 2472 (2012); https://doi.org/10.1016/j.carbon.2012.01.069
- E. Noormohammadi and S. Sanjabi, Surf. Rev. Lett., 27, 9 (2019); https://doi.org/10.1142/S0218625X19501117
- R.K. Nainani and P. Thakur, Water Sci. Technol., 73, 1927 (2016); https://doi.org/10.2166/wst.2016.039
- C. Hou, Q. Zhang, Y. Li and H. Wang, J. Hazard. Mater., 205-206, 229 (2012); https://doi.org/10.1016/j.jhazmat.2011.12.071
- M.A.E. Wafi, M.A. Ahmed, H.S. Abdel-Samad and H.A.A. Medien, Mater. Sci. Energy Technol., 5, 217 (2022); https://doi.org/10.1016/j.mset.2022.02.003
References
N. Morin-Crini, E. Lichtfouse, G. Liu, V. Balaram, A.R.L. Ribeiro, Z. Lu, F. Stock, E. Carmona, M.R. Teixeira, L.A. Picos-Corrales, J.C. Moreno-Piraján, L. Giraldo, C. Li, A. Pandey, D. Hocquet, G. Torri and G. Crini, Environ. Chem. Lett., 20, 2311 (2022); https://doi.org/10.1007/s10311-022-01447-4
M.T.H. Van Vliet, E.R. Jones, M. Florke, W.H.P. Franssen, N. Hanasaki, Y. Wada and J.R. Yearsley, Environ. Res. Lett., 16, 024020 (2021); https://doi.org/10.1088/1748-9326/abbfc3
P. Shandilya, P. Raizada and P. Singh, Photocatalysis, 57, 119 (2021); https://doi.org/10.1007/978-3-030-54723-3
N. Bhattacharjee, I. Som, R. Saha and S. Mondal, Int. J. Environ. Anal. Chem., (2022); https://doi.org/10.1080/03067319.2021.2022130
S. Khanna, P. Marathey, S. Paneliya, P. Vinchhi, R. Chaudhari and J. Vora, Int. J. Hydrogen Energy, 47, 41698 (2022); https://doi.org/10.1016/j.ijhydene.2022.02.050
P. Muthirulan, C. Nirmala Devi and M. Meenakshi Sundaram, Mater. Sci. Semicond. Process., 25, 219 (2014); https://doi.org/10.1016/j.mssp.2013.11.036
B.Y.S. Chang, N.M. Huang, M. Nor An’amt, A.R. Marlinda, Y. Norazriena, M.R. Muhamad, I. Harrison, H.N. Lim and C.C. Hua, Int. J. Nanomedicine, 2012, 3379 (2012); https://doi.org/10.2147/IJN.S28189
J.P. Jeon, D.H. Kweon, B.J. Jang, M.J. Ju and J.B. Baek, Adv. Sustain. Syst., 4, 2000197 (2020); https://doi.org/10.1002/adsu.202000197
R. Nawaz, C.F. Kait, H.Y. Chia, M.H. Isa and L.W. Huei, Environ. Technol. Innov., 19, 101007 (2020); https://doi.org/10.1016/j.eti.2020.101007
N.R. Khalid, E. Ahmed, Z. Hong, L. Sana and M. Ahmed, Curr. Appl. Phys., 13, 659 (2013); https://doi.org/10.1016/j.cap.2012.11.003
V. Stengl, S. Bakardjieva and N. Murafa, Mater. Chem. Phys., 114, 217 (2009); https://doi.org/10.1016/j.matchemphys.2008.09.025
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, Science, 293, 269 (2001); https://doi.org/10.1126/science.1061051
J.M. Herrmann, Catal. Today, 53, 115 (1999); https://doi.org/10.1016/S0920-5861(99)00107-8
J. Wang, D.N. Tafen, J.P. Lewis, Z. Hong, A. Manivannan, M. Zhi, M. Li and N. Wu, J. Am. Chem. Soc., 131, 12290 (2009); https://doi.org/10.1021/ja903781h
D.N. Tafen, J. Wang, N.Q. Wu and J.P. Lewis, Appl. Phys. Lett., 94, 093101 (2009); https://doi.org/10.1063/1.3093820
S. Kohtani, S. Makino, A. Kudo, K. Tokumura, Y. Ishigaki, T. Matsunaga, O. Nikaido, K. Hayakawa and R. Nakagaki, Chem. Lett., 31, 660 (2002); https://doi.org/10.1246/cl.2002.660
Y. Yu, J.C. Yu, C.Y. Chan, Y.K. Che, J.C. Zhao, L. Ding, W.K. Ge and P.K. Wong, Appl. Catal. B, 61, 1 (2005); https://doi.org/10.1016/j.apcatb.2005.03.008
X. Liu, Y. Yang, H. Li, Z. Yang and Y. Fang, Chem. Eng. J., 408, 127259 (2021); https://doi.org/10.1016/j.cej.2020.127259
S. Ali, A. Razzaq and S.-I. In, Catal. Today, 335, 39 (2019); https://doi.org/10.1016/j.cattod.2018.12.003
X.-Y. Zhang, H.-P. Li, X.-L. Cui and Y. Lin, J. Mater. Chem., 20, 2801 (2010); https://doi.org/10.1039/b917240h
M.Q. Yang, N. Zhang and Y.J. Xu, ACS Appl. Mater. Interfaces, 5, 1156 (2013); https://doi.org/10.1021/am3029798
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034
S. Linley, Y.Y. Liu, C.J. Ptacek, D.W. Blowes and F.X. Gu, ACS Appl. Mater. Interfaces, 6, 4658 (2014); https://doi.org/10.1021/am4039272
Z. Wang, M. Zhang, Z. Song, M. Yaseen, Z. Huang, A. Wang, Z. Guisheng and S. Shao, J. Colloid Interface Sci., 624, 88 (2022); https://doi.org/10.1016/j.jcis.2022.05.094
I. Khan, K. Saeed, I. Zekker, B. Zhang, A.H. Hendi, A. Ahmad, S. Ahmad, N. Zada, H. Ahmad, L.A. Shah, T. Shah and I. Khan, Water, 14, 242 (2022); https://doi.org/10.3390/w14020242
S.A. Kidd, P.A. Lancaster, J.C. Anderson, A. Boogert, C.C.Fisher, R. Robertson and D.M. Wass, Prenat. Diagn., 16, 39 (1996); https://doi.org/10.1002/(SICI)1097-0223(199601)16:1<39::AID-PD789>3.0.CO;2-P
G. Rajivgandhi, V. Rtv, R. Nandhakumar, S. Murugan, N.S. Alharbi, S. Kadaikunnan, J.M. Khaled, K.F. Alanzi and W.-J. Li, Environ. Res., 199, 111322 (2021); https://doi.org/10.1016/j.envres.2021.111322
R. Suresh, L. Gnanasekaran, S. Rajendran, M. Soto-Moscoso, W.-H. Chen, P.L. Show and K.S. Khoo, Environ. Technol. Innov., 31, 103149 (2023); https://doi.org/10.1016/j.eti.2023.103149
Y. Hua, S. Wang, J. Xiao, C. Cui and C. Wang, RSC Adv., 7, 28979 (2017); https://doi.org/10.1039/C6RA23939K
A. Pruna, Q. Shao, M. Kamruzzaman, Y.Y. Li, J.A. Zapien, D. Pullini, D. Busquets Mataix and A. Ruotolo, Appl. Surf. Sci., 392, 801 (2017); https://doi.org/10.1016/j.apsusc.2016.09.122
R. Atchudan, T.N.J.I. Edison, S. Perumal, M. Shanmugam and Y.R. Lee, J. Photochem. Photobiol. Chem., 337, 100 (2017); https://doi.org/10.1016/j.jphotochem.2017.01.021
A. Pruna, Z. Wu, J. Zapien, Y. Li and A. Ruotolo, Appl. Surf. Sci., 441, 936 (2018); https://doi.org/10.1016/j.apsusc.2018.02.117
H. Wang, Q. Shen, Z. You, Y. Su, Y. Yu, A. Babapour, F. Zhang, D. Cheng and H. Yang, Mater. Lett., 217, 143 (2018); https://doi.org/10.1016/j.matlet.2018.01.037
H. Zhou, X. Yue, H. Lv, L. Kong, Z. Ji and X. Shen, Ceram. Int., 44, 7240 (2018); https://doi.org/10.1016/j.ceramint.2018.01.176
B.K. Choi, W.K. Choi, S.J. Park and M.K. Seo, J. Nanosci. Nanotechnol., 18, 6075 (2018); https://doi.org/10.1166/jnn.2018.15616
M.R.U.D. Biswas, B.S. Ho and W.C. Oh, Polym. Bull., 77, 4381 (2020); https://doi.org/10.1007/s00289-019-02973-y
I. Ali, S.R. Kim, K. Park and J.O. Kim, Opt. Mater. Express, 7, 1535 (2017); https://doi.org/10.1364/OME.7.001535
A. Datcu, M. Mendoza, A.P. del Pino, C. Logofatu, C. Luculescu and E. György, Catal. Today, 321-322, 81 (2019); https://doi.org/10.1016/j.cattod.2018.02.026
R. Atchudan, T.N.J. Immanuel Edison, S. Perumal, D. Karthikeyan and Y.R. Lee, J. Photochem. Photobiol. Chem., 333, 92 (2017); https://doi.org/10.1016/j.jphotochem.2016.10.021
J. Ahmad, F.A. Sofi, O. Mehraj and K. Majid, Surf. Interfaces, 13, 186 (2018); https://doi.org/10.1016/j.surfin.2018.09.010
S.A. Khan, Z. Arshad, S. Shahid, I. Arshad, K. Rizwan, M. Sher and U. Fatima, Compos., Part B Eng., 175, 107120 (2019); https://doi.org/10.1016/j.compositesb.2019.107120
S. Gupta Chatterjee, S. Chatterjee, A.K. Ray and A.K. Chakraborty, Sens. Actuators B Chem., 221, 1170 (2015); https://doi.org/10.1016/j.snb.2015.07.070
Y. Liang, H. Wang, H. Sanchez Casalongue, Z. Chen and H. Dai, Nano Res., 3, 701 (2010); https://doi.org/10.1007/s12274-010-0033-5
C. Chen, W. Cai, M. Long, B. Zhou, Y. Wu, D. Wu and Y. Feng, ACS Nano, 4, 6425 (2010); https://doi.org/10.1021/nn102130m
R. Lakra, R. Kumar, P.K. Sahoo, D. Thatoi and A. Soam, Inorg. Chem. Commun., 133, 108929 (2021); https://doi.org/10.1016/j.inoche.2021.108929
G. Williams, B. Seger and P.V. Kamat, ACS Nano, 2, 1487 (2008); https://doi.org/10.1021/nn800251f
P. Wang, Y.M. Zhai, D.J. Wang and S.J. Dong, Nanoscale, 3, 1640 (2011); https://doi.org/10.1039/c0nr00714e
C.C. Wang and J.Y. Ying, Chem. Mater., 11, 3113 (1999); https://doi.org/10.1021/cm990180f
M. Keshmiri, M. Mohseni and T. Troczynski, Appl. Catal. B, 53, 209 (2004); https://doi.org/10.1016/j.apcatb.2004.05.016
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
J.Y. Jang, M.S. Kim, H.M. Jeong and C.M. Shin, Compos. Sci. Technol., 69, 186 (2009); https://doi.org/10.1016/j.compscitech.2008.09.039
G. Jiang, X. Zheng, Y. Wang, T. Li and X. Sun, Powder Technol., 207, 465 (2011); https://doi.org/10.1016/j.powtec.2010.11.029
T.D. Nguyen-Phan, V.H. Pham, E.W. Shin, H.D. Pham, S. Kim, J.S. Chung, E.J. Kim and S.H. Hur, Chem. Eng. J., 170, 226 (2011); https://doi.org/10.1016/j.cej.2011.03.060
W. Fan, Q. Lai, Q. Zhang and Y. Wang, J. Phys. Chem. C, 115, 10694 (2011); https://doi.org/10.1021/jp2008804
Y. Zhang, Z.R. Tang, X. Fu and Y.J. Xu, ACS Nano, 5, 7426 (2011); https://doi.org/10.1021/nn202519j
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, A. Slesarev, Z. Sun, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368
G. Jiang, Z. Lin, C. Chen, L. Zhu, Q. Chang, N. Wang, W. Wei and H. Tang, Carbon, 49, 2693 (2011); https://doi.org/10.1016/j.carbon.2011.02.059
S. Sakthivel and H. Kisch, Angew. Chem. Int. Ed., 42, 4908 (2003); https://doi.org/10.1002/anie.200351577
X.G. Gao, L.X. Cheng, W.S. Jiang, X.K. Li and F. Xing, Front Chem., 9, 615164 (2021); https://doi.org/10.3389/fchem.2021.615164
N. Serpone, J. Phys. Chem. B, 110, 24287 (2006); https://doi.org/10.1021/jp065659r
Y.Y. Wen, H.M. Ding and Y.K. Shan, Nanoscale, 3, 4411 (2011); https://doi.org/10.1039/c1nr10604j
Z. Fu, S. Zhang and Z. Fu, Appl. Sci., 9, 3282 (2019); https://doi.org/10.3390/app9163282
R. Kaveh, M. Mokhtarifar, M. Bagherzadeh, A. Lucotti, M.V. Diamanti and M.P. Pedeferri, Molecules, 25, 2996 (2020); https://doi.org/10.3390/molecules25132996
H. Zhang, X. Lv, Y. Li, Y. Wang and J. Li, ACS Nano, 4, 380 (2010); https://doi.org/10.1021/nn901221k
X. Niu, W. Yan, H. Zhao and J. Yang, Appl. Surf. Sci., 440, 804 (2018); https://doi.org/10.1016/j.apsusc.2018.01.069
N. Singh, S. Jana, G.P. Singh and R.K. Dey, Adv. Compos. Hybrid Mater., 3, 127 (2020); https://doi.org/10.1007/s42114-020-00140-w
J. Li, S. Zhou, G.-B. Hong and C.-T. Chang, Chem. Eng. J., 219, 486 (2013); https://doi.org/10.1016/j.cej.2013.01.031
R.T. Yunarti, T.N. Safitri, L.C.C. Dimonti, G. Aulia, M. Khalil and M. Ridwan, J. Phys. Chem. Solids, 160, 110357 (2022); https://doi.org/10.1016/j.jpcs.2021.110357
X. Wang, S. Han, Q. Zhang, N. Zhang and D. Zhao, MATEC Web of Conf., 238, 03006 (2018); https://doi.org/10.1051/matecconf/201823803006
N.T.V. Hoan, N.N. Minh, T.T.K. Nhi, N. Van Thang, V.A. Tuan, V.T. Nguyen, N.M. Thanh, N. Van Hung and D.Q. Khieu, J. Nanomater., 2020, 1 (2020); https://doi.org/10.1155/2020/4350125
F.-E. Zirar, A. Anouar, N. Katir, I.A. Ichou and A. El Kadib, RSC Advances, 11, 28116 (2021); https://doi.org/10.1039/D1RA05275F
E.K. Nejman, A. Wanag, J. Kapica-Kozar, L. Kowalczyk, B. Tryba, M. Zgrzebnicki, J. Przepiórski and A.W. Morawski, Catal. Today, 357, 630 (2020); https://doi.org/10.1016/j.cattod.2019.04.078
V. Loryuenyong, J. Charoensuk, R. Charupongtawitch, A. Usakulwattana and A. Buasri, J. Nanosci. Nanotechnol., 16, 296 (2016); https://doi.org/10.1166/jnn.2016.11612
J. Kaur and M. Kaur, Ceram. Int., 45, 8646 (2019); https://doi.org/10.1016/j.ceramint.2019.01.185
D. Zhao, G. Sheng, C. Chen and X. Wang, Appl. Catal. B, 111-112, 303 (2012); https://doi.org/10.1016/j.apcatb.2011.10.012
Y. Min, K. Zhang, W. Zhao, F.C. Zheng, Y.C. Chen and Y.G. Zhang, Chem. Eng. J., 193-194, 203 (2012); https://doi.org/10.1016/j.cej.2012.04.047
J.A. Park, B. Yang, J. Lee, I.G. Kim, J.H. Kim, J.W. Choi, H.D. Park, I.W. Nah and S.H. Lee, Chemosphere, 191, 738 (2018); https://doi.org/10.1016/j.chemosphere.2017.10.094
X. Yin, H. Zhang, P. Xu, J. Han, J. Li and M. He, RSC Adv., 3, 18474 (2013); https://doi.org/10.1039/c3ra43403f
C.H. Kim, B. Kim and K.S. Yang, Carbon, 50, 2472 (2012); https://doi.org/10.1016/j.carbon.2012.01.069
E. Noormohammadi and S. Sanjabi, Surf. Rev. Lett., 27, 9 (2019); https://doi.org/10.1142/S0218625X19501117
R.K. Nainani and P. Thakur, Water Sci. Technol., 73, 1927 (2016); https://doi.org/10.2166/wst.2016.039
C. Hou, Q. Zhang, Y. Li and H. Wang, J. Hazard. Mater., 205-206, 229 (2012); https://doi.org/10.1016/j.jhazmat.2011.12.071
M.A.E. Wafi, M.A. Ahmed, H.S. Abdel-Samad and H.A.A. Medien, Mater. Sci. Energy Technol., 5, 217 (2022); https://doi.org/10.1016/j.mset.2022.02.003