Copyright (c) 2023 RANI S. KANKATE, VIKAS C. NATHE, SANJAY J. KSHIRSAGER, SUNITA N. SURSE, SNEHA A. BHALERAO, SHANTANU S. GHODKE, JATIN A. SADHWANI
This work is licensed under a Creative Commons Attribution 4.0 International License.
Bioisosterism based Design, Synthesis and Antifungal Evaluation of Novel Fluconazole Analogues
Corresponding Author(s) : RANI S. KANKATE
Asian Journal of Chemistry,
Vol. 35 No. 10 (2023): Vol 35 Issue 10, 2023
Abstract
A novel series of compounds containing tert.-amine moiety, piperazine triazole and triazole ring were synthesized by microwave assisted synthesis. The solubility and pharmacokinetic profiles of the compounds were improved by introducing the piperazine at the C3 position of fluconazole. The methylene bridge between the tert.-amine group and piperazine triazole moiety is kept constant. The tert.-amino moiety was chosen as a bioisostere to substitute tert.-alcohol group in fluconazole. In contrast to tert.-alcohols, tert.-amino groups exhibit the capacity to engage in hydrogen bonding interactions. Additionally, they have the ability to accept protons or form quaternary salts, thereby enhancing their water solubility. Furthermore, tert.-amino groups can coordinate with metal ions, potentially resulting in improved affinity, selectivity and potency in biological properties. In present study, homology models of the CYP51 enzymes derived from Candida albicans were developed using the X-ray crystal structure of CYP51 from Saccharomyces cerevisiae. These models were subsequently employed in a molecular docking investigation, focusing on the active site of the fungal enzymes responsible for lanosterol 14α- demethylation. The synthesized compounds were characterized using 1H NMR, IR and mass spectral techniques. The evaluation of compounds using the in vitro broth dilution technique and disc diffusion assay shown antifungal activity against C. albicans and C. tropicalis. The results indicated that certain compounds exhibited activity similar to that of fluconazole.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Gollapudy, S. Ajmani and S.A. Kulkarni, Bioorg. Med. Chem., 12, 2937 (2004); https://doi.org/10.1016/j.bmc.2004.03.034
- D. Andes, K. Marchillo, T. Stamstad and R. Conklin, Antimicrob. Agents Chemother., 47, 3165 (2003); https://doi.org/10.1128/AAC.47.10.3165-3169.2003
- R.A. Fromtling, Clin. Microbiol. Rev., 1, 187 (1988); https://doi.org/10.1128/CMR.1.2.187
- A. Butts and D.J. Krysan, PLoS Pathog., 8, e1002870 (2012); https://doi.org/10.1371/journal.ppat.1002870
- A. De Sarro, E. La Camera and M.T. Fera, J. Chemother., 20, 661 (2008); https://doi.org/10.1179/joc.2008.20.6.661
- J. Heeres, L. Meerpoel and P. Lewi, Molecules, 15, 4129 (2010); https://doi.org/10.3390/molecules15064129
- V.K. Gupta, A.K. Sharma, R. Sharma, S. Diwan and S. Saini, Nat. Prod. J., 4, 82 (2014); https://doi.org/10.2174/221031550402141009095854
- L. Ostrosky-Zeichner, A. Casadevall, J.N. Galgiani, F.C. Odds and J.H. Rex, Nat. Rev. Drug Discov., 9, 719 (2010); https://doi.org/10.1038/nrd3074
- D.J. Sheehan, C.A. Hitchcock and C.M. Sibley, Clin. Microbiol. Rev., 12, 40 (1999); https://doi.org/10.1128/CMR.12.1.40
- G. Aperis and E. Mylonakis, Expert Opin. Investig. Drugs, 15, 579 (2006); https://doi.org/10.1517/13543784.15.6.579
- A.H. Groll and J. Lumb, Future Microbiol., 7, 179 (2012); https://doi.org/10.2217/fmb.11.154
- M.K. Kathiravan, A.B. Salake, A.S. Chothe, P.B. Dudhe, R.P. Watode, M.S. Mukta and S. Gadhwe, Bioorg. Med. Chem., 20, 5678 (2012); https://doi.org/10.1016/j.bmc.2012.04.045
- E.C. Large, Adv. Fungi., 57, 992 (1940).
- L.L. Frye and C.H. Robinson, J. Chem. Soc. Chem. Commun., 129–131, 129 (1988); https://doi.org/10.1039/C39880000129
- M.A. Ghannoum and L.B. Rice, Clin. Microbiol. Rev., 12, 501 (1999); https://doi.org/10.1128/CMR.12.4.501
- B.C. Monk, T.M. Tomasiak, M.V. Keniya, F.U. Huschmann, J.D.A. Tyndall, J.D. O’Connell III, R.D. Cannon, J.G. McDonald, A. Rodriguez, J.S. Finer-Moore and R.M. Stroud, Proc. Natl. Acad. Sci. USA, 111, 3865 (2014); https://doi.org/10.1073/pnas.1324245111
- S. Yu, X. Chai, H. Hu, Y. Yan, Z. Guan, Y. Zou, Q. Sun and Q. Wu, Eur. J. Med. Chem., 45, 4435 (2010); https://doi.org/10.1016/j.ejmech.2010.07.002
- X. Chai, J. Zhang, S. Yu, H. Hu, Y. Zou, Q. Zhao, Z. Dan, D. Zhang and Q. Wu, Bioorg. Med. Chem. Lett., 19, 1811 (2009); https://doi.org/10.1016/j.bmcl.2009.01.048
- S.-F. Cui, Y. Ren, S.-L. Zhang, X.-M. Peng, G.L. Damu, R.-X. Geng and C.-H. Zhou, Bioorg. Med. Chem. Lett., 23, 3267 (2013); https://doi.org/10.1016/j.bmcl.2013.03.118
- X.-M. Peng, G.-X. Cai and C.-H. Zhou, Curr. Top. Med. Chem., 13, 1963 (2013); https://doi.org/10.2174/15680266113139990125
- Y.-Y. Zhang, J.-L. Mi, C.-H. Zhou and X.-D. Zhou, Eur. J. Med. Chem., 46, 4391 (2011); https://doi.org/10.1016/j.ejmech.2011.07.010
- H.B. Borate, S.P. Sawargave, S.P. Chavan, M.A. Chandavarkar, R. Iyer, A. Tawte, D. Rao, J.V. Deore, A.S. Kudale, P.S. Mahajan and G.S. Kangire, Bioorg. Med. Chem. Lett., 21, 4873 (2011); https://doi.org/10.1016/j.bmcl.2011.06.022
- X. Chai, Drug Des. Devel. Ther., 8, 383 (2014).
- Z. Rezaei, S. Khabnadideh, K. Zomorodian, K. Pakshir, G. Kashi, N. Sanagoei and S. Gholami, Arch. Pharm., 344, 658 (2011); https://doi.org/10.1002/ardp.201000357
- J.N. Sangshetti, D.K. Lokwani, A.P. Sarkate and D.B. Shinde, Chem. Biol. Drug Des., 78, 800 (2011); https://doi.org/10.1111/j.1747-0285.2011.01178.x
- K.L. Lahtchev, D.I. Batovska, S.P. Parushev, V.M. Ubiyvovk and A.A. Sibirny, Eur. J. Med. Chem., 43, 2220 (2008); https://doi.org/10.1016/j.ejmech.2007.12.027
- Y. Luo, Y. Lu, L. Gan, C. Zhou, J. Wu, R. Geng and Y.-Y. Zhang, Arch. Pharm., 342, 386 (2009); https://doi.org/10.1002/ardp.200800221
- Z. Nowakowska, B. Kêdzia and G. Schroeder, Eur. J. Med. Chem., 43, 707 (2008); https://doi.org/10.1016/j.ejmech.2007.05.006
- V.K. Jain, B. Jain, U.K. Sharma and D. Saha, Int. J. Curr. Pharm. Res., 3, 66 (2011).
- N.R. Pai, D.S. Dubhashi, S. Vishwasrao and D. Pusalkar, J. Chem. Pharm. Res., 2, 506 (2010).
- A.Kaur and A. Chawla, Int. J. Universal, 3, 113 (2014).
- G. Marzaro, A. Guiotto and A. Chilin, Green Chem., 11, 774 (2009); https://doi.org/10.1039/B900750D
- Z. Rezaei, S. Khabnadideh, K. Pakshir, Z. Hossaini, F. Amiri and E. Assadpour, Eur. J. Med. Chem., 44, 3064 (2009); https://doi.org/10.1016/j.ejmech.2008.07.012
- A.R. Katritzky, W. Kuzmierkiewicz and J.V. Greenhill, Recl. Trav. Chim. Pays Bas, 110, 369 (1991); https://doi.org/10.1002/recl.19911100903
- A.R. Katritzky and J. Wu, Synthesis, 1994, 597 (1994); https://doi.org/10.1055/s-1994-25530
- NCCLS, Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts; Approved Guideline (2004).
- M. Cuenca-Estrella, W. Lee-Yang, M.A. Ciblak, B.A. Arthington-Skaggs, E. Mellado, D.W. Warnock and J.L. Rodriguez-Tudela, Antimicrob. Agents Chemother., 46, 3644 (2002); https://doi.org/10.1128/AAC.46.11.3644-3647.2002
- A. Espinel-Ingroff, F. Barchiesi, M. Cuenca Estrella, A. Fothergill, M.A. Pfaller, M. Rinaldi, J.L. Rodriguez-Tudela and P.E. Verweij, J. Clin. Microbiol., 43, 4535 (2005); https://doi.org/10.1128/JCM.43.9.4535-4540.2005
- A. Espinel-Ingroff, F. Barchiesi, M. Cuenca-Estrella, M.A. Pfaller, M. Rinaldi, J.L. Rodriguez-Tudela and P.E. Verweij, J. Clin. Microbiol., 43, 3884 (2005); https://doi.org/10.1128/JCM.43.8.3884-3889.2005
- P.B. Miniyar, A.A. Mahajan, S.N. Mokale, M.U. Shah, A.S. Kumar and G.U. Chaturbhuj, Arab. J. Chem., 10, 295 (2017); https://doi.org/10.1016/j.arabjc.2013.09.005
- J.L. Rodriguez-Tudela, J.P. Donnelly, M. Pfaller, E. Chryssantou, P. Warn, D.W. Denning, A. Espinel-Ingroff, F. Barchiesi and M. Cuenca-Estrella, J. Clin. Microbiol., 45, 109 (2007); https://doi.org/10.1128/JCM.01969-06
- S.C. Lovell, I.W. Davis, W.B. Arendall III, P.I.W. de Bakker, J.M. Word, M.G. Prisant, J.S. Richardson and D.C. Richardson, Proteins, 50, 437 (2003); https://doi.org/10.1002/prot.10286
- I.W. Davis, L.W. Murray, J.S. Richardson and D.C. Richardson, Nucleic Acids Res., 32(Web Server), W615 (2004); https://doi.org/10.1093/nar/gkh398
- M.J. Sippl, Proteins, 17, 355 (1993); https://doi.org/10.1002/prot.340170404
- F. Inagaki, Cell Struct. Funct., 15, 237 (1990); https://doi.org/10.1247/csf.15.237
- M. Wiederstein and M.J. Sippl, Nucleic Acids Res., 35, W407 (2007); https://doi.org/10.1093/nar/gkm290
- R.A. Engh and R. Huber, Acta Crystallogr. A, 47, 392 (1991); https://doi.org/10.1107/S0108767391001071
- Y. Zhang and J. Skolnick, Nucleic Acids Res., 33, 2302 (2005); https://doi.org/10.1093/nar/gki524
- S. Behrouz, M.N.S. Rad, S. Rostami, M. Behrouz, E. Zarehnezhad and A. Zarehnezhad, Mol. Divers., 18, 797 (2014); https://doi.org/10.1007/s11030-014-9539-1
- Z. Jiang, J. Gu, C. Wang, S. Wang, N. Liu, Y. Jiang, G. Dong, Y. Wang, Y. Liu, J. Yao, Z. Miao, W. Zhang and C. Sheng, Eur. J. Med. Chem., 82, 490 (2014); https://doi.org/10.1016/j.ejmech.2014.05.079
- C. Sheng, X. Che, W. Wang, S. Wang, Y. Cao, Z. Miao, J. Yao and W. Zhang, Eur. J. Med. Chem., 46, 5276 (2011); https://doi.org/10.1016/j.ejmech.2011.03.019
- S. Wang, G. Jin, W. Wang, L. Zhu, Y. Zhang, G. Dong, Y. Liu, C. Zhuang, Z. Miao, J. Yao, W. Zhang and C. Sheng, Eur. J. Med. Chem., 53, 292 (2012); https://doi.org/10.1016/j.ejmech.2012.04.013
- W. Wang, S. Wang, G. Dong, Y. Liu, Z. Guo, Z. Miao, J. Yao, W. Zhang and C. Sheng, MedChemComm, 2, 1066 (2011); https://doi.org/10.1039/c1md00103e
- W. Wang, C. Sheng, X. Che, H. Ji, Z. Miao, J. Yao and W. Zhang, Arch. Pharm., 342, 732 (2009); https://doi.org/10.1002/ardp.200900103
- Y. Xu, C. Sheng, W. Wang, X. Che, Y. Cao, G. Dong, S. Wang, H. Ji, Z. Miao, J. Yao and W. Zhang, Bioorg. Med. Chem. Lett., 20, 2942 (2010); https://doi.org/10.1016/j.bmcl.2010.03.014
- R.S. Kankate, P.S. Gide and D.P. Belsare, Arab. J. Chem., 12, 2224 (2019); https://doi.org/10.1016/j.arabjc.2015.02.002
- H.-Z. Zhang, G.L.V. Damu, G.-X. Cai and C.-H. Zhou, Eur. J. Med. Chem., 64, 329 (2013); https://doi.org/10.1016/j.ejmech.2013.03.049
- H. Türkmen, N. Ceyhan, N. Ülkü Karabay Yavasoglu, G. Özdemir and B. Çetinkaya, Eur. J. Med. Chem., 46, 2895 (2011); https://doi.org/10.1016/j.ejmech.2011.04.012
- A.M. Khallil, I.M. Daghman and A.A. Fady, J. Microbiol. Modern Techn., 1, 2575 (2015).
References
R. Gollapudy, S. Ajmani and S.A. Kulkarni, Bioorg. Med. Chem., 12, 2937 (2004); https://doi.org/10.1016/j.bmc.2004.03.034
D. Andes, K. Marchillo, T. Stamstad and R. Conklin, Antimicrob. Agents Chemother., 47, 3165 (2003); https://doi.org/10.1128/AAC.47.10.3165-3169.2003
R.A. Fromtling, Clin. Microbiol. Rev., 1, 187 (1988); https://doi.org/10.1128/CMR.1.2.187
A. Butts and D.J. Krysan, PLoS Pathog., 8, e1002870 (2012); https://doi.org/10.1371/journal.ppat.1002870
A. De Sarro, E. La Camera and M.T. Fera, J. Chemother., 20, 661 (2008); https://doi.org/10.1179/joc.2008.20.6.661
J. Heeres, L. Meerpoel and P. Lewi, Molecules, 15, 4129 (2010); https://doi.org/10.3390/molecules15064129
V.K. Gupta, A.K. Sharma, R. Sharma, S. Diwan and S. Saini, Nat. Prod. J., 4, 82 (2014); https://doi.org/10.2174/221031550402141009095854
L. Ostrosky-Zeichner, A. Casadevall, J.N. Galgiani, F.C. Odds and J.H. Rex, Nat. Rev. Drug Discov., 9, 719 (2010); https://doi.org/10.1038/nrd3074
D.J. Sheehan, C.A. Hitchcock and C.M. Sibley, Clin. Microbiol. Rev., 12, 40 (1999); https://doi.org/10.1128/CMR.12.1.40
G. Aperis and E. Mylonakis, Expert Opin. Investig. Drugs, 15, 579 (2006); https://doi.org/10.1517/13543784.15.6.579
A.H. Groll and J. Lumb, Future Microbiol., 7, 179 (2012); https://doi.org/10.2217/fmb.11.154
M.K. Kathiravan, A.B. Salake, A.S. Chothe, P.B. Dudhe, R.P. Watode, M.S. Mukta and S. Gadhwe, Bioorg. Med. Chem., 20, 5678 (2012); https://doi.org/10.1016/j.bmc.2012.04.045
E.C. Large, Adv. Fungi., 57, 992 (1940).
L.L. Frye and C.H. Robinson, J. Chem. Soc. Chem. Commun., 129–131, 129 (1988); https://doi.org/10.1039/C39880000129
M.A. Ghannoum and L.B. Rice, Clin. Microbiol. Rev., 12, 501 (1999); https://doi.org/10.1128/CMR.12.4.501
B.C. Monk, T.M. Tomasiak, M.V. Keniya, F.U. Huschmann, J.D.A. Tyndall, J.D. O’Connell III, R.D. Cannon, J.G. McDonald, A. Rodriguez, J.S. Finer-Moore and R.M. Stroud, Proc. Natl. Acad. Sci. USA, 111, 3865 (2014); https://doi.org/10.1073/pnas.1324245111
S. Yu, X. Chai, H. Hu, Y. Yan, Z. Guan, Y. Zou, Q. Sun and Q. Wu, Eur. J. Med. Chem., 45, 4435 (2010); https://doi.org/10.1016/j.ejmech.2010.07.002
X. Chai, J. Zhang, S. Yu, H. Hu, Y. Zou, Q. Zhao, Z. Dan, D. Zhang and Q. Wu, Bioorg. Med. Chem. Lett., 19, 1811 (2009); https://doi.org/10.1016/j.bmcl.2009.01.048
S.-F. Cui, Y. Ren, S.-L. Zhang, X.-M. Peng, G.L. Damu, R.-X. Geng and C.-H. Zhou, Bioorg. Med. Chem. Lett., 23, 3267 (2013); https://doi.org/10.1016/j.bmcl.2013.03.118
X.-M. Peng, G.-X. Cai and C.-H. Zhou, Curr. Top. Med. Chem., 13, 1963 (2013); https://doi.org/10.2174/15680266113139990125
Y.-Y. Zhang, J.-L. Mi, C.-H. Zhou and X.-D. Zhou, Eur. J. Med. Chem., 46, 4391 (2011); https://doi.org/10.1016/j.ejmech.2011.07.010
H.B. Borate, S.P. Sawargave, S.P. Chavan, M.A. Chandavarkar, R. Iyer, A. Tawte, D. Rao, J.V. Deore, A.S. Kudale, P.S. Mahajan and G.S. Kangire, Bioorg. Med. Chem. Lett., 21, 4873 (2011); https://doi.org/10.1016/j.bmcl.2011.06.022
X. Chai, Drug Des. Devel. Ther., 8, 383 (2014).
Z. Rezaei, S. Khabnadideh, K. Zomorodian, K. Pakshir, G. Kashi, N. Sanagoei and S. Gholami, Arch. Pharm., 344, 658 (2011); https://doi.org/10.1002/ardp.201000357
J.N. Sangshetti, D.K. Lokwani, A.P. Sarkate and D.B. Shinde, Chem. Biol. Drug Des., 78, 800 (2011); https://doi.org/10.1111/j.1747-0285.2011.01178.x
K.L. Lahtchev, D.I. Batovska, S.P. Parushev, V.M. Ubiyvovk and A.A. Sibirny, Eur. J. Med. Chem., 43, 2220 (2008); https://doi.org/10.1016/j.ejmech.2007.12.027
Y. Luo, Y. Lu, L. Gan, C. Zhou, J. Wu, R. Geng and Y.-Y. Zhang, Arch. Pharm., 342, 386 (2009); https://doi.org/10.1002/ardp.200800221
Z. Nowakowska, B. Kêdzia and G. Schroeder, Eur. J. Med. Chem., 43, 707 (2008); https://doi.org/10.1016/j.ejmech.2007.05.006
V.K. Jain, B. Jain, U.K. Sharma and D. Saha, Int. J. Curr. Pharm. Res., 3, 66 (2011).
N.R. Pai, D.S. Dubhashi, S. Vishwasrao and D. Pusalkar, J. Chem. Pharm. Res., 2, 506 (2010).
A.Kaur and A. Chawla, Int. J. Universal, 3, 113 (2014).
G. Marzaro, A. Guiotto and A. Chilin, Green Chem., 11, 774 (2009); https://doi.org/10.1039/B900750D
Z. Rezaei, S. Khabnadideh, K. Pakshir, Z. Hossaini, F. Amiri and E. Assadpour, Eur. J. Med. Chem., 44, 3064 (2009); https://doi.org/10.1016/j.ejmech.2008.07.012
A.R. Katritzky, W. Kuzmierkiewicz and J.V. Greenhill, Recl. Trav. Chim. Pays Bas, 110, 369 (1991); https://doi.org/10.1002/recl.19911100903
A.R. Katritzky and J. Wu, Synthesis, 1994, 597 (1994); https://doi.org/10.1055/s-1994-25530
NCCLS, Method for Antifungal Disk Diffusion Susceptibility Testing of Yeasts; Approved Guideline (2004).
M. Cuenca-Estrella, W. Lee-Yang, M.A. Ciblak, B.A. Arthington-Skaggs, E. Mellado, D.W. Warnock and J.L. Rodriguez-Tudela, Antimicrob. Agents Chemother., 46, 3644 (2002); https://doi.org/10.1128/AAC.46.11.3644-3647.2002
A. Espinel-Ingroff, F. Barchiesi, M. Cuenca Estrella, A. Fothergill, M.A. Pfaller, M. Rinaldi, J.L. Rodriguez-Tudela and P.E. Verweij, J. Clin. Microbiol., 43, 4535 (2005); https://doi.org/10.1128/JCM.43.9.4535-4540.2005
A. Espinel-Ingroff, F. Barchiesi, M. Cuenca-Estrella, M.A. Pfaller, M. Rinaldi, J.L. Rodriguez-Tudela and P.E. Verweij, J. Clin. Microbiol., 43, 3884 (2005); https://doi.org/10.1128/JCM.43.8.3884-3889.2005
P.B. Miniyar, A.A. Mahajan, S.N. Mokale, M.U. Shah, A.S. Kumar and G.U. Chaturbhuj, Arab. J. Chem., 10, 295 (2017); https://doi.org/10.1016/j.arabjc.2013.09.005
J.L. Rodriguez-Tudela, J.P. Donnelly, M. Pfaller, E. Chryssantou, P. Warn, D.W. Denning, A. Espinel-Ingroff, F. Barchiesi and M. Cuenca-Estrella, J. Clin. Microbiol., 45, 109 (2007); https://doi.org/10.1128/JCM.01969-06
S.C. Lovell, I.W. Davis, W.B. Arendall III, P.I.W. de Bakker, J.M. Word, M.G. Prisant, J.S. Richardson and D.C. Richardson, Proteins, 50, 437 (2003); https://doi.org/10.1002/prot.10286
I.W. Davis, L.W. Murray, J.S. Richardson and D.C. Richardson, Nucleic Acids Res., 32(Web Server), W615 (2004); https://doi.org/10.1093/nar/gkh398
M.J. Sippl, Proteins, 17, 355 (1993); https://doi.org/10.1002/prot.340170404
F. Inagaki, Cell Struct. Funct., 15, 237 (1990); https://doi.org/10.1247/csf.15.237
M. Wiederstein and M.J. Sippl, Nucleic Acids Res., 35, W407 (2007); https://doi.org/10.1093/nar/gkm290
R.A. Engh and R. Huber, Acta Crystallogr. A, 47, 392 (1991); https://doi.org/10.1107/S0108767391001071
Y. Zhang and J. Skolnick, Nucleic Acids Res., 33, 2302 (2005); https://doi.org/10.1093/nar/gki524
S. Behrouz, M.N.S. Rad, S. Rostami, M. Behrouz, E. Zarehnezhad and A. Zarehnezhad, Mol. Divers., 18, 797 (2014); https://doi.org/10.1007/s11030-014-9539-1
Z. Jiang, J. Gu, C. Wang, S. Wang, N. Liu, Y. Jiang, G. Dong, Y. Wang, Y. Liu, J. Yao, Z. Miao, W. Zhang and C. Sheng, Eur. J. Med. Chem., 82, 490 (2014); https://doi.org/10.1016/j.ejmech.2014.05.079
C. Sheng, X. Che, W. Wang, S. Wang, Y. Cao, Z. Miao, J. Yao and W. Zhang, Eur. J. Med. Chem., 46, 5276 (2011); https://doi.org/10.1016/j.ejmech.2011.03.019
S. Wang, G. Jin, W. Wang, L. Zhu, Y. Zhang, G. Dong, Y. Liu, C. Zhuang, Z. Miao, J. Yao, W. Zhang and C. Sheng, Eur. J. Med. Chem., 53, 292 (2012); https://doi.org/10.1016/j.ejmech.2012.04.013
W. Wang, S. Wang, G. Dong, Y. Liu, Z. Guo, Z. Miao, J. Yao, W. Zhang and C. Sheng, MedChemComm, 2, 1066 (2011); https://doi.org/10.1039/c1md00103e
W. Wang, C. Sheng, X. Che, H. Ji, Z. Miao, J. Yao and W. Zhang, Arch. Pharm., 342, 732 (2009); https://doi.org/10.1002/ardp.200900103
Y. Xu, C. Sheng, W. Wang, X. Che, Y. Cao, G. Dong, S. Wang, H. Ji, Z. Miao, J. Yao and W. Zhang, Bioorg. Med. Chem. Lett., 20, 2942 (2010); https://doi.org/10.1016/j.bmcl.2010.03.014
R.S. Kankate, P.S. Gide and D.P. Belsare, Arab. J. Chem., 12, 2224 (2019); https://doi.org/10.1016/j.arabjc.2015.02.002
H.-Z. Zhang, G.L.V. Damu, G.-X. Cai and C.-H. Zhou, Eur. J. Med. Chem., 64, 329 (2013); https://doi.org/10.1016/j.ejmech.2013.03.049
H. Türkmen, N. Ceyhan, N. Ülkü Karabay Yavasoglu, G. Özdemir and B. Çetinkaya, Eur. J. Med. Chem., 46, 2895 (2011); https://doi.org/10.1016/j.ejmech.2011.04.012
A.M. Khallil, I.M. Daghman and A.A. Fady, J. Microbiol. Modern Techn., 1, 2575 (2015).