Copyright (c) 2023 Mrinal Sarkar
This work is licensed under a Creative Commons Attribution 4.0 International License.
An Ammonium Cation Included Dinuclear Cd(II) Complex and A Face-Shared Octahedral Dinuclear Cd(II) Complex with N2O Donor Tridentate Schiff base Ligand
Corresponding Author(s) : Mrinal Sarkar
Asian Journal of Chemistry,
Vol. 35 No. 10 (2023): Vol 35 Issue 10, 2023
Abstract
One face-shared octahedral Cd(II) complex and one ammonium cation included Cd(II) complex have been examined with the N2O donor monoanionic Schiff-base ligand 4-methyl-2,6-bis(((phenylmethyl)imino)methyl)phenol (HL) having a central phenoxide unit. The configuration of the cadmium coordination geometries is responsible for varying modes of ligand binding and structures. The gas phase geometry of complex 1 has been optimized by density functional theory. In CH3OH, the reaction between HL and Cd(NO3)2·4H2O in the presence of triethylamine produces a tris-L clipped face-shared octahedral dinuclear complex [Cd2(μ-L)3]·(OH) (1). Use of Cd(NO3)2·4H2O and NH4SCN in CH3OH in the absence of triethylamine leads to the synthesis of [Cd2(μ-L)2(μ1,1-NCS)(μ-NH4 +)(NCS)2] (2), which contains a NH4 + cation at its center. Changes in co-ligands have an ability to regulate the synthesis of these two Cd(II) complexes, effectively allowing selfassembly to be directed. Three types of bridges of Cd(OPh)3Cd and Cd(OPh)2(μ1,1-NCS)(μ- H4
+)Cd in 1 and 2 are responsible for the Cd···Cd separations of 3.324 and 3.432 Å, respectively.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K.J. Lee and T.G. Lee, J. Hazard. Mater., 241-242, 1 (2012); https://doi.org/10.1016/j.jhazmat.2012.09.025
- B.M. Bridgewater and G. Parkin, J. Am. Chem. Soc., 122, 7140 (2000); https://doi.org/10.1021/ja001530y
- T.W. Lane and F.M.M. Morel, Proc. Natl. Acad. Sci. USA, 97, 4627 (2000); https://doi.org/10.1073/pnas.090091397
- Y. Xu, L. Feng, P.D. Jeffrey, Y. Shi and F.M.M. Morel, Nature, 452, 56 (2008); https://doi.org/10.1038/nature06636
- T. Marino, N. Russo and M. Toscano, J. Am. Chem. Soc., 127, 4242 (2005); https://doi.org/10.1021/ja045546q
- T.W. Lane, M.A. Saito, G.N. George, I.J. Pickering, R.C. Prince and F.M.M. Morel, Nature, 435, 42 (2005); https://doi.org/10.1038/435042a
- T. Kawamoto, M. Nishiwaki, Y. Tsunekawa, K. Nozaki and T. Konno, Inorg. Chem., 47, 3095 (2008); https://doi.org/10.1021/ic7020758
- M. Hakimi, Z. Mardani, K. Moeini and M.A. Fernandes, J. Coord. Chem., 65, 2221 (2012); https://doi.org/10.1080/00958972.2012.690145
- F. Marandi, M. Jangholi, M. Hakimi, H.A. Rudbari and G. Bruno, J. Mol. Struct., 1036, 71 (2012); https://doi.org/10.1016/j.molstruc.2012.09.070
- P. Roy, J. Coord. Chem., 62, 2003 (2009); https://doi.org/10.1080/00958970902751888
- H.-C. Fang, J.-Q. Zhu, L.-J. Zhou, H.-Y. Jia, S.-S. Li, X. Gong, S.-B. Li, Y.-P. Cai, P.K. Thallapally, J. Liu and G.J. Exarhos, Cryst. Growth Des., 10, 3277 (2010); https://doi.org/10.1021/cg1004598
- H. Wu, J. Yuan, Y. Bai, F. Kou, F. Jia and B. Liu, Bioinorg. Chem. Appl., 2011, 705989 (2011); https://doi.org/10.1155/2011/705989
- A.A. Khandar, Z.M. Azar, M. Eskandani, C.B. Hubschle, S. Smaalen, B. Shaabani and Y. Omidi, Polyhedron, 171, 237 (2019); https://doi.org/10.1016/j.poly.2019.06.026
- B. Barszcz, S. Hodorowicz, A. Jablonska-Wawrzycka and K. Stadnicka, J. Coord. Chem., 58, 203 (2005); https://doi.org/10.1080/0095897042000327905
- M. Hakimi, K. Moeini, Z. Mardani, E. Schuh and F. Mohr, J. Coord. Chem., 66, 1129 (2013); https://doi.org/10.1080/00958972.2013.775648
- F.A. Afkhami, G. Mahmoudi, A.V. Gurbanov, F.I. Zubkov, F. Qu, A. Gupta and D.A. Safin, Dalton Trans., 46, 14888 (2017); https://doi.org/10.1039/C7DT02952G
- D. Kuriakose, A.A. Aravindakshan and M.R.P. Kurup, Polyhedron, 127, 84 (2017); https://doi.org/10.1016/j.poly.2017.01.041
- B. Machura, I. Nawrot and K. Michalik, Polyhedron, 30, 2619 (2011); https://doi.org/10.1016/j.poly.2011.07.009
- J.-X. Li and Z.-X. Du, J. Cluster Sci., 31, 507 (2020); https://doi.org/10.1007/s10876-019-01666-w
- R.-Q. Fan, D.-S. Zhu, Y. Mu, G.-H. Li, Y.-L. Yang, Q. Su and S.-H. Feng, Eur. J. Inorg. Chem., 2004, 4891 (2004); https://doi.org/10.1002/ejic.200400443
- S.-G. Liu, L.-P. Zhang, J. Liu, W.-Y. Su and X.-B. Shi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 464 (2012); https://doi.org/10.1016/j.saa.2012.06.039
- R. Alizadeh and V. Amani, Inorg. Chim. Acta, 443, 151 (2016); https://doi.org/10.1016/j.ica.2015.12.034
- P. Ghorai, P. Brandão, A. Bauzá, A. Frontera and A. Saha, Inorg. Chim. Acta, 469, 189 (2018); https://doi.org/10.1016/j.ica.2017.09.005
- P. Chakraborty, A. Guha, S. Das, E. Zangrando and D. Das, Polyhedron, 49, 12 (2013); https://doi.org/10.1016/j.poly.2012.09.017
- J.W. Nugent, H. Lee, H.-S. Lee, J.H. Reibenspies and R.D. Hancock, Chem. Commun., 49, 9749 (2013); https://doi.org/10.1039/C3CC45829F
- R. Pandey, A. Kumar, Q. Xu and D.S. Pandey, Dalton Trans., 49, 542 (2020); https://doi.org/10.1039/C9DT03017D
- J. Nath, A. Tarai and J.B. Baruah, ACS Omega, 4, 18444 (2019); https://doi.org/10.1021/acsomega.9b02779
- X.-Z. Guo, S.-S. Chen, W.-D. Li, S.-S. Han, F. Deng, R. Qiao and Y. Zhao, ACS Omega, 4, 11540 (2019); https://doi.org/10.1021/acsomega.9b01108
- R.R. Gagne, C.L. Spiro, T.J. Smith, C.A. Hamann, W.R. Thies and A.D. Shiemke, J. Am. Chem. Soc., 103, 4073 (1981); https://doi.org/10.1021/ja00404a017
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT (2016).
- J.J. Grzybowski and F.L. Urbach, Inorg. Chem., 19, 2604 (1980); https://doi.org/10.1021/ic50211a025
- P. Roy, K. Dhara, M. Manassero, J. Ratha and P. Banerjee, Inorg. Chem., 46, 6405 (2007); https://doi.org/10.1021/ic700420w
- G. Sheldrick, SHELXS, University of Göttingen, Germany (1997).
- W. Madison, Bruker APEX2 Software, Bruker AXS Inc. V2. 0-1, USA (2005).
- G.M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data (1997).
- G.M. Sheldrick, SAINT and XPREP, version 5.1. J Siemens Industrial Automation Inc., Madison, WI (1995).
- Bruker, Saint+Bruker AXS Inc., Madison, Wisconsin, USA, Version 6.02 (includes XPREP and SADABS) (1999).
- O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 42, 339 (2009); https://doi.org/10.1107/S0021889808042726
- G.M. Sheldrick, SHELXL-2014/7, University of Gottingen, Germany, (2014).
- L.J. Farrugia, J. Appl. Cryst., 45, 849 (2012); https://doi.org/10.1107/S0021889812029111
- G.M. Sheldrick, Acta Crystallogr. C Struct. Chem., 71, 3 (2015); https://doi.org/10.1107/S2053229614024218
- C.-H. Dai and F.-L. Mao, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 42, 537 (2012); https://doi.org/10.1080/15533174.2011.613435
- S. Roy and S. Chattopadhyay, Inorg. Chim. Acta, 433, 72 (2015); https://doi.org/10.1016/j.ica.2015.04.018
- M. Sarkar, R. Clérac, C. Mathonière, N.G.R. Hearns, V. Bertolasi and D. Ray, Eur. J. Inorg. Chem., 2009, 4675 (2009); https://doi.org/10.1002/ejic.200900577
- M. Sarkar, R. Clérac, C. Mathonière, N.G.R. Hearns, V. Bertolasi and D. Ray, Inorg. Chem., 49, 6575 (2010); https://doi.org/10.1021/ic100356y
- S. Mirdya, T. Basak and S. Chattopadhyay, Polyhedron, 170, 253 (2019); https://doi.org/10.1016/j.poly.2019.05.043
- J. Cano, G.D. Munno, F. Lloret and M. Julve, Inorg. Chem., 39, 1611 (2000); https://doi.org/10.1021/ic991219l
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A, Wiley Interscience: New York, edn. 5, p. 191 (1997).
- L.F. Jones, S.A. Barrett, C.A. Kilner and M.A. Halcrow, Chem. Eur. J., 14, 223 (2008); https://doi.org/10.1002/chem.200701318
- J.T.R. Dunsmuir and A.P. Lane, Spectrochim. Acta, 28A, 45 (1972); https://doi.org/10.1016/0584-8539(72)80008-4
- M. Epple, W. Rüdorff and W. Massa, Z. Anorg. Allg. Chem., 495, 200 (1982); https://doi.org/10.1002/zaac.19824950121
- W. Vedder and D.F. Hornig, J. Chem. Phys., 35, 1560 (1961); https://doi.org/10.1063/1.1732110
- T. Chatterjee, M. Sarma and S.K. Das, Cryst. Growth Des., 10, 3149 (2010); https://doi.org/10.1021/cg100292u
- P.K. Bhaumik, S. Roy, K. Harms and S. Chattopadhyay, Polyhedron, 81, 168 (2014); https://doi.org/10.1016/j.poly.2014.05.053
- S. Roy, A. Dey, P.P. Ray and J. Ortega-Castro, Chem. Commun., 51, 12974 (2015); https://doi.org/10.1039/C5CC04323A
- S. Roy and A. Bauzá, Inorg. Chim. Acta, 450, 321 (2016); https://doi.org/10.1016/j.ica.2016.05.030
- S. Roy, K. Harms and A. Bauzá, Polyhedron, 121, 199 (2017); https://doi.org/10.1016/j.poly.2016.09.018
References
K.J. Lee and T.G. Lee, J. Hazard. Mater., 241-242, 1 (2012); https://doi.org/10.1016/j.jhazmat.2012.09.025
B.M. Bridgewater and G. Parkin, J. Am. Chem. Soc., 122, 7140 (2000); https://doi.org/10.1021/ja001530y
T.W. Lane and F.M.M. Morel, Proc. Natl. Acad. Sci. USA, 97, 4627 (2000); https://doi.org/10.1073/pnas.090091397
Y. Xu, L. Feng, P.D. Jeffrey, Y. Shi and F.M.M. Morel, Nature, 452, 56 (2008); https://doi.org/10.1038/nature06636
T. Marino, N. Russo and M. Toscano, J. Am. Chem. Soc., 127, 4242 (2005); https://doi.org/10.1021/ja045546q
T.W. Lane, M.A. Saito, G.N. George, I.J. Pickering, R.C. Prince and F.M.M. Morel, Nature, 435, 42 (2005); https://doi.org/10.1038/435042a
T. Kawamoto, M. Nishiwaki, Y. Tsunekawa, K. Nozaki and T. Konno, Inorg. Chem., 47, 3095 (2008); https://doi.org/10.1021/ic7020758
M. Hakimi, Z. Mardani, K. Moeini and M.A. Fernandes, J. Coord. Chem., 65, 2221 (2012); https://doi.org/10.1080/00958972.2012.690145
F. Marandi, M. Jangholi, M. Hakimi, H.A. Rudbari and G. Bruno, J. Mol. Struct., 1036, 71 (2012); https://doi.org/10.1016/j.molstruc.2012.09.070
P. Roy, J. Coord. Chem., 62, 2003 (2009); https://doi.org/10.1080/00958970902751888
H.-C. Fang, J.-Q. Zhu, L.-J. Zhou, H.-Y. Jia, S.-S. Li, X. Gong, S.-B. Li, Y.-P. Cai, P.K. Thallapally, J. Liu and G.J. Exarhos, Cryst. Growth Des., 10, 3277 (2010); https://doi.org/10.1021/cg1004598
H. Wu, J. Yuan, Y. Bai, F. Kou, F. Jia and B. Liu, Bioinorg. Chem. Appl., 2011, 705989 (2011); https://doi.org/10.1155/2011/705989
A.A. Khandar, Z.M. Azar, M. Eskandani, C.B. Hubschle, S. Smaalen, B. Shaabani and Y. Omidi, Polyhedron, 171, 237 (2019); https://doi.org/10.1016/j.poly.2019.06.026
B. Barszcz, S. Hodorowicz, A. Jablonska-Wawrzycka and K. Stadnicka, J. Coord. Chem., 58, 203 (2005); https://doi.org/10.1080/0095897042000327905
M. Hakimi, K. Moeini, Z. Mardani, E. Schuh and F. Mohr, J. Coord. Chem., 66, 1129 (2013); https://doi.org/10.1080/00958972.2013.775648
F.A. Afkhami, G. Mahmoudi, A.V. Gurbanov, F.I. Zubkov, F. Qu, A. Gupta and D.A. Safin, Dalton Trans., 46, 14888 (2017); https://doi.org/10.1039/C7DT02952G
D. Kuriakose, A.A. Aravindakshan and M.R.P. Kurup, Polyhedron, 127, 84 (2017); https://doi.org/10.1016/j.poly.2017.01.041
B. Machura, I. Nawrot and K. Michalik, Polyhedron, 30, 2619 (2011); https://doi.org/10.1016/j.poly.2011.07.009
J.-X. Li and Z.-X. Du, J. Cluster Sci., 31, 507 (2020); https://doi.org/10.1007/s10876-019-01666-w
R.-Q. Fan, D.-S. Zhu, Y. Mu, G.-H. Li, Y.-L. Yang, Q. Su and S.-H. Feng, Eur. J. Inorg. Chem., 2004, 4891 (2004); https://doi.org/10.1002/ejic.200400443
S.-G. Liu, L.-P. Zhang, J. Liu, W.-Y. Su and X.-B. Shi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 97, 464 (2012); https://doi.org/10.1016/j.saa.2012.06.039
R. Alizadeh and V. Amani, Inorg. Chim. Acta, 443, 151 (2016); https://doi.org/10.1016/j.ica.2015.12.034
P. Ghorai, P. Brandão, A. Bauzá, A. Frontera and A. Saha, Inorg. Chim. Acta, 469, 189 (2018); https://doi.org/10.1016/j.ica.2017.09.005
P. Chakraborty, A. Guha, S. Das, E. Zangrando and D. Das, Polyhedron, 49, 12 (2013); https://doi.org/10.1016/j.poly.2012.09.017
J.W. Nugent, H. Lee, H.-S. Lee, J.H. Reibenspies and R.D. Hancock, Chem. Commun., 49, 9749 (2013); https://doi.org/10.1039/C3CC45829F
R. Pandey, A. Kumar, Q. Xu and D.S. Pandey, Dalton Trans., 49, 542 (2020); https://doi.org/10.1039/C9DT03017D
J. Nath, A. Tarai and J.B. Baruah, ACS Omega, 4, 18444 (2019); https://doi.org/10.1021/acsomega.9b02779
X.-Z. Guo, S.-S. Chen, W.-D. Li, S.-S. Han, F. Deng, R. Qiao and Y. Zhao, ACS Omega, 4, 11540 (2019); https://doi.org/10.1021/acsomega.9b01108
R.R. Gagne, C.L. Spiro, T.J. Smith, C.A. Hamann, W.R. Thies and A.D. Shiemke, J. Am. Chem. Soc., 103, 4073 (1981); https://doi.org/10.1021/ja00404a017
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, R.L. Martin, K. Morokuma, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT (2016).
J.J. Grzybowski and F.L. Urbach, Inorg. Chem., 19, 2604 (1980); https://doi.org/10.1021/ic50211a025
P. Roy, K. Dhara, M. Manassero, J. Ratha and P. Banerjee, Inorg. Chem., 46, 6405 (2007); https://doi.org/10.1021/ic700420w
G. Sheldrick, SHELXS, University of Göttingen, Germany (1997).
W. Madison, Bruker APEX2 Software, Bruker AXS Inc. V2. 0-1, USA (2005).
G.M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data (1997).
G.M. Sheldrick, SAINT and XPREP, version 5.1. J Siemens Industrial Automation Inc., Madison, WI (1995).
Bruker, Saint+Bruker AXS Inc., Madison, Wisconsin, USA, Version 6.02 (includes XPREP and SADABS) (1999).
O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Puschmann, J. Appl. Cryst., 42, 339 (2009); https://doi.org/10.1107/S0021889808042726
G.M. Sheldrick, SHELXL-2014/7, University of Gottingen, Germany, (2014).
L.J. Farrugia, J. Appl. Cryst., 45, 849 (2012); https://doi.org/10.1107/S0021889812029111
G.M. Sheldrick, Acta Crystallogr. C Struct. Chem., 71, 3 (2015); https://doi.org/10.1107/S2053229614024218
C.-H. Dai and F.-L. Mao, Synth. React. Inorg. Met.-Org. Nano-Met. Chem., 42, 537 (2012); https://doi.org/10.1080/15533174.2011.613435
S. Roy and S. Chattopadhyay, Inorg. Chim. Acta, 433, 72 (2015); https://doi.org/10.1016/j.ica.2015.04.018
M. Sarkar, R. Clérac, C. Mathonière, N.G.R. Hearns, V. Bertolasi and D. Ray, Eur. J. Inorg. Chem., 2009, 4675 (2009); https://doi.org/10.1002/ejic.200900577
M. Sarkar, R. Clérac, C. Mathonière, N.G.R. Hearns, V. Bertolasi and D. Ray, Inorg. Chem., 49, 6575 (2010); https://doi.org/10.1021/ic100356y
S. Mirdya, T. Basak and S. Chattopadhyay, Polyhedron, 170, 253 (2019); https://doi.org/10.1016/j.poly.2019.05.043
J. Cano, G.D. Munno, F. Lloret and M. Julve, Inorg. Chem., 39, 1611 (2000); https://doi.org/10.1021/ic991219l
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A, Wiley Interscience: New York, edn. 5, p. 191 (1997).
L.F. Jones, S.A. Barrett, C.A. Kilner and M.A. Halcrow, Chem. Eur. J., 14, 223 (2008); https://doi.org/10.1002/chem.200701318
J.T.R. Dunsmuir and A.P. Lane, Spectrochim. Acta, 28A, 45 (1972); https://doi.org/10.1016/0584-8539(72)80008-4
M. Epple, W. Rüdorff and W. Massa, Z. Anorg. Allg. Chem., 495, 200 (1982); https://doi.org/10.1002/zaac.19824950121
W. Vedder and D.F. Hornig, J. Chem. Phys., 35, 1560 (1961); https://doi.org/10.1063/1.1732110
T. Chatterjee, M. Sarma and S.K. Das, Cryst. Growth Des., 10, 3149 (2010); https://doi.org/10.1021/cg100292u
P.K. Bhaumik, S. Roy, K. Harms and S. Chattopadhyay, Polyhedron, 81, 168 (2014); https://doi.org/10.1016/j.poly.2014.05.053
S. Roy, A. Dey, P.P. Ray and J. Ortega-Castro, Chem. Commun., 51, 12974 (2015); https://doi.org/10.1039/C5CC04323A
S. Roy and A. Bauzá, Inorg. Chim. Acta, 450, 321 (2016); https://doi.org/10.1016/j.ica.2016.05.030
S. Roy, K. Harms and A. Bauzá, Polyhedron, 121, 199 (2017); https://doi.org/10.1016/j.poly.2016.09.018