Copyright (c) 2023 SELVARAJ GEETHA, RAJENDRAN SRIBALAN, Department of Physics, S.D.N.B. Vaishnav College for Women, Chromepet, Chennai-600044, India
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis, Crystal Structure, Spectroscopic Characterization and Anti-COVID-19 Molecular Docking Investigation of 2-(2-Formylphenoxy)acetamide
Corresponding Author(s) : SELVARAJ GEETHA
Asian Journal of Chemistry,
Vol. 35 No. 10 (2023): Vol 35 Issue 10, 2023
Abstract
Compound 2-(2-formylphenoxy)acetamide was synthesized by adopting the slow evaporation solution growth technique. The spectroscopic techniques were studied experimentally and theoretically at DFT for the title compound. The X-ray diffraction analysis confirmed its crystal structure. The compound with the molecular formula C9H9NO3 crystallizes in the monoclinic crystal system with the centrosymmetric space group P21/n. The optimized structure, stability, hardness, softness, Mulliken charge distribution and molecular electrostatic potential (MEP) of the grown crystal were investigated using DFT calculations. Molecular docking studies were performed for the compound to evaluate its antiviral activity against SARS-CoV-2. The molecule has good binding affinity for the target protein 6NUS.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E.B. Dennler and A.S. Frasca, Can. J. Chem., 45, 697 (1967); https://doi.org/10.1139/v67-114
- G. Jones and B. Abarca, J. Adv. Heterocycl. Chem., 100, 195 (2010); https://doi.org/10.1016/S0065-2725(10)10007-5
- N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
- W.-N. Wu, F.-X. Cheng, L. Yan and N. Tang, J. Coord. Chem., 61, 2207 (2008); https://doi.org/10.1080/00958970801901329
- W.-N. Wu, Y. Wang, A.-Y. Zhang, R.-Q. Zhao and Q.-F. Wang, Acta Cryst., E66, m288 (2010); https://doi.org/10.1107/S160053681000471X
- A. Greenberg, C.M. Breneman and J.F. Liebman, eds., The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science, John Wiley & Sons: New York (1999).
- J. Thorner, S.D. Emr and J.N. Abelson, Methods Enzymol., 326, 601 (2000); https://doi.org/10.1016/S0076-6879(00)26041-2
- C.R. Kemnitz and M.J. Loewen, J. Am. Chem. Soc., 129, 2521 (2007); https://doi.org/10.1021/ja0663024
- J.I. Mujika, J.M. Mercero and X. Lopez, J. Am. Chem. Soc., 127, 4445 (2005); https://doi.org/10.1021/ja044873v
- B. Wang and Z. Cao, Chem. Eur. J., 17, 11919 (2011); https://doi.org/10.1002/chem.201101274
- S. Mahesh, K.-C. Tang and M. Raj, Molecules, 23, 2615 (2018); https://doi.org/10.3390/molecules23102615
- S. Thakral and V. Singh, Curr. Bioactive Comp., 15, 316 (2019); https://doi.org/10.2174/1573407214666180614121140
- D. Mijin and A. Marinkovic, Synth. Commun., 36, 193 (2006); https://doi.org/10.1080/00397910500334421
- D.Z. Mijin, M. Prascevic and S.D. Petrovic, J. Serb. Chem. Soc., 73, 945 (2008); https://doi.org/10.2298/JSC0810945M
- W.G. Nichols, A.J. Peck Campbell and M. Boeckh, Clin. Microbiol. Rev., 21, 274 (2008); https://doi.org/10.1128/CMR.00045-07
- Z. Song, Y. Xu, L. Bao, L. Zhang, P. Yu, Y. Qu, H. Zhu, W. Zhao, Y. Han and C. Qin, Viruses, 11, 59 (2019); https://doi.org/10.3390/v11010059
- R.N. Kirchdoerfer and A.B. Ward, Nat. Commun., 10, 2342 (2019); https://doi.org/10.1038/s41467-019-10280-3
References
E.B. Dennler and A.S. Frasca, Can. J. Chem., 45, 697 (1967); https://doi.org/10.1139/v67-114
G. Jones and B. Abarca, J. Adv. Heterocycl. Chem., 100, 195 (2010); https://doi.org/10.1016/S0065-2725(10)10007-5
N. Kerru, L. Gummidi, S. Maddila, K.K. Gangu and S.B. Jonnalagadda, Molecules, 25, 1909 (2020); https://doi.org/10.3390/molecules25081909
W.-N. Wu, F.-X. Cheng, L. Yan and N. Tang, J. Coord. Chem., 61, 2207 (2008); https://doi.org/10.1080/00958970801901329
W.-N. Wu, Y. Wang, A.-Y. Zhang, R.-Q. Zhao and Q.-F. Wang, Acta Cryst., E66, m288 (2010); https://doi.org/10.1107/S160053681000471X
A. Greenberg, C.M. Breneman and J.F. Liebman, eds., The Amide Linkage: Structural Significance in Chemistry, Biochemistry and Materials Science, John Wiley & Sons: New York (1999).
J. Thorner, S.D. Emr and J.N. Abelson, Methods Enzymol., 326, 601 (2000); https://doi.org/10.1016/S0076-6879(00)26041-2
C.R. Kemnitz and M.J. Loewen, J. Am. Chem. Soc., 129, 2521 (2007); https://doi.org/10.1021/ja0663024
J.I. Mujika, J.M. Mercero and X. Lopez, J. Am. Chem. Soc., 127, 4445 (2005); https://doi.org/10.1021/ja044873v
B. Wang and Z. Cao, Chem. Eur. J., 17, 11919 (2011); https://doi.org/10.1002/chem.201101274
S. Mahesh, K.-C. Tang and M. Raj, Molecules, 23, 2615 (2018); https://doi.org/10.3390/molecules23102615
S. Thakral and V. Singh, Curr. Bioactive Comp., 15, 316 (2019); https://doi.org/10.2174/1573407214666180614121140
D. Mijin and A. Marinkovic, Synth. Commun., 36, 193 (2006); https://doi.org/10.1080/00397910500334421
D.Z. Mijin, M. Prascevic and S.D. Petrovic, J. Serb. Chem. Soc., 73, 945 (2008); https://doi.org/10.2298/JSC0810945M
W.G. Nichols, A.J. Peck Campbell and M. Boeckh, Clin. Microbiol. Rev., 21, 274 (2008); https://doi.org/10.1128/CMR.00045-07
Z. Song, Y. Xu, L. Bao, L. Zhang, P. Yu, Y. Qu, H. Zhu, W. Zhao, Y. Han and C. Qin, Viruses, 11, 59 (2019); https://doi.org/10.3390/v11010059
R.N. Kirchdoerfer and A.B. Ward, Nat. Commun., 10, 2342 (2019); https://doi.org/10.1038/s41467-019-10280-3