Copyright (c) 2023 Nelson Amirtharaj S, Mariappan M, Beaula premavathi V
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Nickel Oxide Nanoarchitecture Crystals as an Advanced Electrode Material for Supercapacitors
Corresponding Author(s) : Nelson Amirtharaj S
Asian Journal of Chemistry,
Vol. 35 No. 10 (2023): Vol 35 Issue 10, 2023
Abstract
A NiO nanoarchitecture with a chain-like structure material was synthesized using a CTAB-assisted sonochemical method and then applied as an electrode in supercapacitors. Spectral analysis like XRD, FTIR and SEM was used to characterize the crystalline nature, internal structure and morphological properties of NiO nanoarchitecture. At a scan rate of 5 mV s-1, the NiO material exhibits a pseudocapacitive charge storage mechanism and provides a specific capacitance of 562 with good rate capabilities. Moreover, the chain-like NiO material exhibits outstanding cycle stability, retaining 96% of the original capacitance after 3,000 cycles at a scan rate of 100 mV s-1. The high-performance, chain-like nanostructured NiO material is easy to make and is of great interest for improved energy storage devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Peng, G. Ma, J. Mu, K. Sun and Z. Lei, J. Mater. Chem. A Mater. Energy Sustain., 2, 10384 (2014); https://doi.org/10.1039/C4TA01899K
- S. Amaresh, K. Karthikeyan, I.C. Jang and Y.S. Lee, J. Mater. Chem. A Mater. Energy Sustain., 2, 11099 (2014); https://doi.org/10.1039/C4TA01633E
- W. Chen, R.B. Rakhi, M.N. Hedhili and H.N. Alshareef, J. Mater. Chem. A Mater. Energy Sustain., 2, 5236 (2014); https://doi.org/10.1039/c3ta15245f
- R. Wang, X. Yan, J. Lang, Z. Zheng and P. Zhang, J. Mater. Chem. A Mater. Energy Sustain., 2, 12724 (2014); https://doi.org/10.1039/C4TA01296H
- T. Pettong, P. Iamprasertkun, A. Krittayavathananon, P. Sirisinudomkit, P. Sukha, A. Seubsai, M. Chareonpanich, P. Kongkachuichay, J. Limtrakul and M. Sawangphruk, ACS Appl. Mater. Interfaces, 8, 34045 (2016); https://doi.org/10.1021/acsami.6b09440
- A.V. Radhamani, K.M. Shareef and M.S.R. Rao, ACS Appl. Mater. Interfaces, 8, 30531 (2016); https://doi.org/10.1021/acsami.6b08082
- J.S. Chen, C. Guan, Y. Gui and D.J. Blackwood, ACS Appl. Mater. Interfaces, 9, 496 (2017); https://doi.org/10.1021/acsami.6b14746
- P. Forouzandeh, V. Kumaravel and S.C. Pillai, Catalysts, 10, 969 (2020); https://doi.org/10.3390/catal10090969
- S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim and J.H. Lee, J. Mater. Chem., 22, 767 (2012); https://doi.org/10.1039/C1JM14468E
- C.C. Hu, K.H. Chang, M.C. Lin and Y.T. Wu, Nano Lett., 6, 2690 (2006); https://doi.org/10.1021/nl061576a
- Q. Luo, P. Xu, Y. Qiu, Z. Cheng, X. Chang and H. Fan, Mater. Lett., 198, 192 (2017); https://doi.org/10.1016/j.matlet.2017.04.032
- S. Zhao, T. Liu, D. Hou, W. Zeng, B. Miao, S. Hussain, X. Peng and M.S. Javed, Appl. Surf. Sci., 356, 259 (2015); https://doi.org/10.1016/j.apsusc.2015.08.037
- J. Li and X. Liu, Mater. Lett., 112, 39 (2013); https://doi.org/10.1016/j.matlet.2013.08.094
- F.I. Dar, K.R. Moonoosawmy and M. Es-Souni, Nanoscale Res. Lett., 8, 363 (2013); https://doi.org/10.1186/1556-276X-8-363
- S.K. Shinde, H.M. Yadav, G.S. Ghodake, A.A. Kadam, V.S. Kumbhar, J. Yang, K. Hwang, A.D. Jagadale, S. Kumar and D.Y. Kim, Colloids Surf. B Biointerfaces, 181, 1004 (2019); https://doi.org/10.1016/j.colsurfb.2019.05.079
- J. Yang, T. Lan, J. Liu, Y. Song and M. Wei, Electrochim. Acta, 105, 489 (2013); https://doi.org/10.1016/j.electacta.2013.05.023
- X.H. Xia, J.P. Tu, Y.J. Mai, X. Wang, C. Gu and X. Zhao, J. Mater. Chem., 21, 9319 (2011); https://doi.org/10.1039/c1jm10946d
- H. Wang, H. Yi, X. Chen and X. Wang, Electrochim. Acta, 105, 353 (2013); https://doi.org/10.1016/j.electacta.2013.05.031
- X. Wang, Z. Yang, X. Sun, X. Li, D. Wang, P. Wang and D. He, J. Mater. Chem., 21, 9988 (2011); https://doi.org/10.1039/c1jm11490e
- K. Czelej, K. Cwieka, J.C. Colmenares and K.J. Kurzydlowski, Appl. Catal. B, 222, 73 (2018); https://doi.org/10.1016/j.apcatb.2017.10.003
- N. Li, E.A. Gibson, P. Qin, G. Boschloo, M. Gorlov, A. Hagfeldt and L. Sun, Adv. Mater., 22, 1759 (2010); https://doi.org/10.1002/adma.200903151
- I. Hotový, J. Huran, L. Spiess, R. Capkovic and Š. Hašcik, Vacuum, 58, 300 (2000); https://doi.org/10.1016/S0042-207X(00)00182-2
- P. Justin, S.K. Meher and G.R. Rao, J. Phys. Chem. C, 114, 5203 (2010); https://doi.org/10.1021/jp9097155
- S. Liu, J. Jia, J. Wang, S. Liu, X. Wang, H. Song and X. Hu, J. Magn. Magn. Mater., 324, 2070 (2012); https://doi.org/10.1016/j.jmmm.2012.02.017
- M. Salavati-Niasari, F. Mohandes, M. Mazaheri, F. Davar, M. Monemzadeh and N. Yavarinia, Inorg. Chim. Acta, 362, 3691 (2009); https://doi.org/10.1016/j.ica.2009.04.025
- M.S. Wu, Y.A. Huang, C.H. Yang and J.J. Jow, Int. J. Hydrogen Energy, 32, 4153 (2007); https://doi.org/10.1016/j.ijhydene.2007.06.001
- G. Kianpour, M. Salavati-Niasari and H. Emadi, Ultrason. Sonochem., 20, 418 (2013); https://doi.org/10.1016/j.ultsonch.2012.08.012
- Y.J. Chen, F.N. Meng, H.L. Yu, C. Zhu, T. Wang, P. Gao and Q. Ouyang, Sens. Actuators B Chem., 176, 15 (2013); https://doi.org/10.1016/j.snb.2012.08.007
- C. Qi, Y.J. Zhu, C.T. Wu, T.-W. Sun, Y.-Y. Jiang, Y.-G. Zhang, J. Wu and F. Chen, RSC Adv., 6, 9686 (2016); https://doi.org/10.1039/C5RA26231C
- M. Zhang, A. Zhao, D. Li, H. Sun, D. Wang, H. Guo, Q. Gao, Z. Gan and W. Tao, Analyst, 137, 4584 (2012); https://doi.org/10.1039/c2an35758e
- H.M. Mohaideen, S.S. Fareed and B. Natarajan, Surf. Rev. Lett., 26, 1950043 (2019); https://doi.org/10.1142/S0218625X19500434
- Y. Zeng, L. Wang, Z. Wang, J. Xiao and H. Wang, Mater. Today Commun., 5, 70 (2015); https://doi.org/10.1016/j.mtcomm.2015.11.001
- F. Chen, W. Zhou, H. Yao, P. Fan, J. Yang, Z. Fei and M. Zhong, Green Chem., 15, 3057 (2013); https://doi.org/10.1039/c3gc41080c
- L. Fan, L. Tang, H. Gong, Z. Yao and R. Guo, J. Mater. Chem., 22, 16376 (2012); https://doi.org/10.1039/c2jm32241b
- J. Yesuraj and S.A. Suthanthiraraj, J. Mol. Struct., 1181, 131 (2019); https://doi.org/10.1016/j.molstruc.2018.12.087
- J. Yesuraj, S. Austin Suthanthiraraj and O. Padmaraj, Mater. Sci. Semicond. Process., 90, 225 (2019); https://doi.org/10.1016/j.mssp.2018.10.030
References
H. Peng, G. Ma, J. Mu, K. Sun and Z. Lei, J. Mater. Chem. A Mater. Energy Sustain., 2, 10384 (2014); https://doi.org/10.1039/C4TA01899K
S. Amaresh, K. Karthikeyan, I.C. Jang and Y.S. Lee, J. Mater. Chem. A Mater. Energy Sustain., 2, 11099 (2014); https://doi.org/10.1039/C4TA01633E
W. Chen, R.B. Rakhi, M.N. Hedhili and H.N. Alshareef, J. Mater. Chem. A Mater. Energy Sustain., 2, 5236 (2014); https://doi.org/10.1039/c3ta15245f
R. Wang, X. Yan, J. Lang, Z. Zheng and P. Zhang, J. Mater. Chem. A Mater. Energy Sustain., 2, 12724 (2014); https://doi.org/10.1039/C4TA01296H
T. Pettong, P. Iamprasertkun, A. Krittayavathananon, P. Sirisinudomkit, P. Sukha, A. Seubsai, M. Chareonpanich, P. Kongkachuichay, J. Limtrakul and M. Sawangphruk, ACS Appl. Mater. Interfaces, 8, 34045 (2016); https://doi.org/10.1021/acsami.6b09440
A.V. Radhamani, K.M. Shareef and M.S.R. Rao, ACS Appl. Mater. Interfaces, 8, 30531 (2016); https://doi.org/10.1021/acsami.6b08082
J.S. Chen, C. Guan, Y. Gui and D.J. Blackwood, ACS Appl. Mater. Interfaces, 9, 496 (2017); https://doi.org/10.1021/acsami.6b14746
P. Forouzandeh, V. Kumaravel and S.C. Pillai, Catalysts, 10, 969 (2020); https://doi.org/10.3390/catal10090969
S. Bose, T. Kuila, A.K. Mishra, R. Rajasekar, N.H. Kim and J.H. Lee, J. Mater. Chem., 22, 767 (2012); https://doi.org/10.1039/C1JM14468E
C.C. Hu, K.H. Chang, M.C. Lin and Y.T. Wu, Nano Lett., 6, 2690 (2006); https://doi.org/10.1021/nl061576a
Q. Luo, P. Xu, Y. Qiu, Z. Cheng, X. Chang and H. Fan, Mater. Lett., 198, 192 (2017); https://doi.org/10.1016/j.matlet.2017.04.032
S. Zhao, T. Liu, D. Hou, W. Zeng, B. Miao, S. Hussain, X. Peng and M.S. Javed, Appl. Surf. Sci., 356, 259 (2015); https://doi.org/10.1016/j.apsusc.2015.08.037
J. Li and X. Liu, Mater. Lett., 112, 39 (2013); https://doi.org/10.1016/j.matlet.2013.08.094
F.I. Dar, K.R. Moonoosawmy and M. Es-Souni, Nanoscale Res. Lett., 8, 363 (2013); https://doi.org/10.1186/1556-276X-8-363
S.K. Shinde, H.M. Yadav, G.S. Ghodake, A.A. Kadam, V.S. Kumbhar, J. Yang, K. Hwang, A.D. Jagadale, S. Kumar and D.Y. Kim, Colloids Surf. B Biointerfaces, 181, 1004 (2019); https://doi.org/10.1016/j.colsurfb.2019.05.079
J. Yang, T. Lan, J. Liu, Y. Song and M. Wei, Electrochim. Acta, 105, 489 (2013); https://doi.org/10.1016/j.electacta.2013.05.023
X.H. Xia, J.P. Tu, Y.J. Mai, X. Wang, C. Gu and X. Zhao, J. Mater. Chem., 21, 9319 (2011); https://doi.org/10.1039/c1jm10946d
H. Wang, H. Yi, X. Chen and X. Wang, Electrochim. Acta, 105, 353 (2013); https://doi.org/10.1016/j.electacta.2013.05.031
X. Wang, Z. Yang, X. Sun, X. Li, D. Wang, P. Wang and D. He, J. Mater. Chem., 21, 9988 (2011); https://doi.org/10.1039/c1jm11490e
K. Czelej, K. Cwieka, J.C. Colmenares and K.J. Kurzydlowski, Appl. Catal. B, 222, 73 (2018); https://doi.org/10.1016/j.apcatb.2017.10.003
N. Li, E.A. Gibson, P. Qin, G. Boschloo, M. Gorlov, A. Hagfeldt and L. Sun, Adv. Mater., 22, 1759 (2010); https://doi.org/10.1002/adma.200903151
I. Hotový, J. Huran, L. Spiess, R. Capkovic and Š. Hašcik, Vacuum, 58, 300 (2000); https://doi.org/10.1016/S0042-207X(00)00182-2
P. Justin, S.K. Meher and G.R. Rao, J. Phys. Chem. C, 114, 5203 (2010); https://doi.org/10.1021/jp9097155
S. Liu, J. Jia, J. Wang, S. Liu, X. Wang, H. Song and X. Hu, J. Magn. Magn. Mater., 324, 2070 (2012); https://doi.org/10.1016/j.jmmm.2012.02.017
M. Salavati-Niasari, F. Mohandes, M. Mazaheri, F. Davar, M. Monemzadeh and N. Yavarinia, Inorg. Chim. Acta, 362, 3691 (2009); https://doi.org/10.1016/j.ica.2009.04.025
M.S. Wu, Y.A. Huang, C.H. Yang and J.J. Jow, Int. J. Hydrogen Energy, 32, 4153 (2007); https://doi.org/10.1016/j.ijhydene.2007.06.001
G. Kianpour, M. Salavati-Niasari and H. Emadi, Ultrason. Sonochem., 20, 418 (2013); https://doi.org/10.1016/j.ultsonch.2012.08.012
Y.J. Chen, F.N. Meng, H.L. Yu, C. Zhu, T. Wang, P. Gao and Q. Ouyang, Sens. Actuators B Chem., 176, 15 (2013); https://doi.org/10.1016/j.snb.2012.08.007
C. Qi, Y.J. Zhu, C.T. Wu, T.-W. Sun, Y.-Y. Jiang, Y.-G. Zhang, J. Wu and F. Chen, RSC Adv., 6, 9686 (2016); https://doi.org/10.1039/C5RA26231C
M. Zhang, A. Zhao, D. Li, H. Sun, D. Wang, H. Guo, Q. Gao, Z. Gan and W. Tao, Analyst, 137, 4584 (2012); https://doi.org/10.1039/c2an35758e
H.M. Mohaideen, S.S. Fareed and B. Natarajan, Surf. Rev. Lett., 26, 1950043 (2019); https://doi.org/10.1142/S0218625X19500434
Y. Zeng, L. Wang, Z. Wang, J. Xiao and H. Wang, Mater. Today Commun., 5, 70 (2015); https://doi.org/10.1016/j.mtcomm.2015.11.001
F. Chen, W. Zhou, H. Yao, P. Fan, J. Yang, Z. Fei and M. Zhong, Green Chem., 15, 3057 (2013); https://doi.org/10.1039/c3gc41080c
L. Fan, L. Tang, H. Gong, Z. Yao and R. Guo, J. Mater. Chem., 22, 16376 (2012); https://doi.org/10.1039/c2jm32241b
J. Yesuraj and S.A. Suthanthiraraj, J. Mol. Struct., 1181, 131 (2019); https://doi.org/10.1016/j.molstruc.2018.12.087
J. Yesuraj, S. Austin Suthanthiraraj and O. Padmaraj, Mater. Sci. Semicond. Process., 90, 225 (2019); https://doi.org/10.1016/j.mssp.2018.10.030