Copyright (c) 2023 R Preethi Rathna, M. KULANDHAIVEL
This work is licensed under a Creative Commons Attribution 4.0 International License.
Microbial Production of Biopolymer Polyhydroxybutyrate (PHB): Current Challenges and its Application
Corresponding Author(s) : M. KULANDHAIVEL
Asian Journal of Chemistry,
Vol. 35 No. 10 (2023): Vol 35 Issue 10, 2023
Abstract
Plastics are suitable for many industrial applications as they are inexpensive, sturdy, resistant to deterioration and highly versatile. As
advantageous as plastics made from petroleum are, it remains the most major topic of concern among environmentalists and the scientists. Polyhydroxyalkanoates are biodegradable polyesters produced by a wide range of microbes as a source of energy for metabolism, carbon, and oxidoreduction; since they exhibit some properties, which are remarkably similar to those of polyolefins derived from fossil fuels. he literature review conducted over the past decade reveals that polyhydroxybutyrate (PHB) has the potential physical qualities for food packaging material, single-use plastic goods and medicinal sectors. Polyhydroxybutyrate (PHB) is a bacterial biopolymer that has begun to replace petrochemical plastics due to the present trend towards the efficient utilisation of relatively cheaper substrates for its production. This review discusses explicitly the developments in the analysis of microbial biopolymer PHB and additionally provides an outline of current industrial applications, Production, Extraction methods, genes involved, microbes that are capable of producing PHB, challenges faced during production and degradation of PHB.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Mehta, D. Singh, R. Saxena, R. Rani, R.P. Gupta, S.K. Puri and A.S. Mathur, Waste to Wealth, Springer: Singapore, pp. 343-363 (2018).
- R. Madadi, H. Maljaee, L.S. Serafim and S.P.M. Ventura, Mar. Drugs, 19, 4466 (2021); https://doi.org/10.3390/md19080466
- D.H. Vu, D. Åkesson, M.J. Taherzadeh and J.A. Ferreira, Bioresour. Technol., 298, 122393 (2020); https://doi.org/10.1016/j.biortech.2019.122393
- S. Abid, Z.A. Raza and T. Hussain, 3 Biotech, 6, 142 (2016); https://doi.org/10.1007/s13205-016-0452-4
- J. Kaparapu, J. New Biol. Rep., 7, 68 (2018).
- A. Aragosa, V. Specchia and M. Frigione, Proceedings, 69, 5 (2021); https://doi.org/10.3390/CGPM2020-07226
- U. Ushani, A.R. Sumayya, G. Archana, J. Rajesh Banu and J. Dai, Enzymes/Biocatalysts and Bioreactors for Valorization of Food Wastes, In: Food Waste to Valuable Resources, Academic Press, pp. 211-233 (2020); https://doi.org/10.1016/B978-0-12-818353-3.00010-9
- Data Bridge Market Research, article No. 323 (2023) (Accessed on 15th June 2023); https://www.databridgemarketresearch.com/reports/global-polyhydroxyalkanoate-pha-market
- S. Almeida, A. Raposo, M. Almeida-González and C. Carrascosa, Compr. Rev. Food Sci. Food Saf., 17, 1503 (2018); https://doi.org/10.1111/1541-4337.12388
- Bioplastics Market Data 2022—A Global Production Capacities of Bioplastics 2022–2027, European Bioplastics (2022) (Accessed on 15th June 2023); https://www.european-bioplastics.org/market/
- Geneva Environment Network (2023); (Accessed on 15th June 2023); https://www.genevaenvironmentnetwork.org/resources/updates/plastics-and-health/
- V. Marchal, R.D.V. van Dellink, C. Clapp, J. Château, B.M.J. Eliza and V. van Lanzi, Climate change. In: OECD Environmental Outlook to 2050, 14(1), 13 (2011).
- R. Ganesh Saratale, S.-K. Cho, G. Dattatraya Saratale, A.A. Kadam, G.S. Ghodake, M. Kumar, R. Naresh Bharagava, G. Kumar, D. Su Kim, S.I. Mulla and H. Seung Shin, Bioresour. Technol., 325, 124685 (2021); https://doi.org/10.1016/j.biortech.2021.124685
- J.C.C. Yeo, J.K. Muiruri, W. Thitsartarn, Z. Li and C. He, Mater. Sci. Eng. C, 92, 1092 (2018); https://doi.org/10.1016/j.msec.2017.11.006
- A. Getachew and F. Woldesenbet, BMC Res. Notes, 9, 509 (2016); https://doi.org/10.1186/s13104-016-2321-y
- M. Müller-Santos, J.J. Koskimäki L.P.S. Alves, E.M. de Souza, D. Jendrossek and A.M. Pirttilä, FEMS Microbiol. Rev., 45, fuaa058 (2021); https://doi.org/10.1093/femsre/fuaa058
- M.R. Jangra, K.S. Ikbal, S.J. Pippal and V.K. Sikka, Biochem. Biophys. Res. Commun., 11, 97 (2018); https://doi.org/10.21786/bbrc/11.1/14
- C. Nielsen, A. Rahman, A.U. Rehman, M.K. Walsh and C.D. Miller, Microb. Biotechnol., 10, 1338 (2017); https://doi.org/10.1111/1751-7915.12776
- S. Obruèa, P. Dvoøák, P. Sedláèek, M. Koller, K. Sedláø, I. Pernicová and D. Šafránek, Biotechnol. Adv., 58, 107906 (2022); https://doi.org/10.1016/j.biotechadv.2022.107906
- L. Vinet and A. Zhedanov, J. Phys. A Math. Theor., 44, 085201 (2011); https://doi.org/10.1088/1751-8113/44/8/085201
- P. Sharma, R. Munir, W. Blunt, C. Dartiailh, J. Cheng, T.C. Charles and D.B. Levin, Appl. Sci., 7, 242 (2017); https://doi.org/10.3390/app7030242
- G.D. Koning, Can. J. Microbiol., 41, 303 (1995); https://doi.org/10.1139/m95-201
- S.K. Hahn and Y.K. Chang, Biotechnol. Technol.., 9, 873 (1995); https://doi.org/10.1007/BF00158539
- A.C. Hayward, W.G.C. Forsyth and J.B. Roberts, J. Gen. Microbiol., 20, 510 (1959); https://doi.org/10.1099/00221287-20-3-510
- P.J. Senior, G.A. Beech, G.A.F. Ritchie and E.A. Dawes, Biochem. J., 128, 1193 (1972); https://doi.org/10.1042/bj1281193
- J.H. Law and R.A. Slepecky, J. Bacteriol., 82, 33 (1961); https://doi.org/10.1128/jb.82.1.33-36.1961
- E. Markl, H. Grünbichler and M. Lackner, Cyanobacteria for PHB Bioplastics Production: A Review, IntechOpen (2019); https://doi.org/10.5772/intechopen.81536
- S. Soni, V. Chhokar, V. Beniwal, R. Kumar, H. Badgujjar, R. Chauhan, S. Dudeja and A. Kumar, Int. J. Biol. Macromol., 233, 123575 (2023); https://doi.org/10.1016/j.ijbiomac.2023.123575
- A. Manna, S. Pal and A.K. Paul, Acta Biol. Hung., 51, 73 (2000); https://doi.org/10.1007/BF03542967
- K. Tajima, H. Tannai, Y. Satoh and M. Munekata, Polym. J., 35, 407 (2003); https://doi.org/10.1295/polymj.35.407
- N.D. Ayub, M.J. Pettinari, J.A. Ruiz and N.I. López, Curr. Microbiol., 49, 170 (2004); https://doi.org/10.1007/s00284-004-4254-2
- K. Sujatha and R. Shenbagarathai, Lett. Appl. Microbiol., 43, 607 (2006); https://doi.org/10.1111/j.1472-765X.2006.02016.x
- M. Yilmaz, H. Soran and Y. Beyatli, Microbiol. Res., 161, 127 (2006); https://doi.org/10.1016/j.micres.2005.07.001
- E. Rueda and J. García, Sci. Total Environ., 800, 149561 (2021); https://doi.org/10.1016/j.scitotenv.2021.149561
- L. Sharma and N. Mallick, Bioresour. Technol., 96, 1304 (2005); https://doi.org/10.1016/j.biortech.2004.10.009
- S. Ansari and T. Fatma, PLoS One, 11, e0158168 (2016); https://doi.org/10.1371/journal.pone.0158168
- P. Murugan, L. Han, C.Y. Gan, F.H. Maurer and K. Sudesh, J. Biotechnol., 239, 98 (2016); https://doi.org/10.1016/j.jbiotec.2016.10.012
- B.S. Saharan, A. Grewal and P. Kumar, Chin. J. Biol., 2014, 802984 (2014); https://doi.org/10.1155/2014/802984
- M. Mariotto, S. Egloff, I. Fritz and D. Refardt, Algal Res., 70, 103013 (2023); https://doi.org/10.1016/j.algal.2023.103013
- M.G. de Morais, B. da Silva Vaz, E.G. de Morais and J.A.V. Costa, Biomed. Res. Int., 2015, 835761 (2015); https://doi.org/10.1155/2015/835761
- F. Hempel, A.S. Bozarth, N. Lindenkamp, A. Klingl, S. Zauner, U. Linne, A. Steinbüchel and U.G. Maier, Microb. Cell Fact., 10, 81 (2011); https://doi.org/10.1186/1475-2859-10-81
- G. Kavitha, C. Kurinjimalar, K. Sivakumar, M. Kaarthik, R. Aravind, P. Palani and R. Rengasamy, Int. J. Biol. Macromol., 93, 534 (2016); https://doi.org/10.1016/j.ijbiomac.2016.09.019
- C. Trakunjae, A. Boondaeng, W. Apiwatanapiwat, A. Kosugi, T. Arai, K. Sudesh and P. Vaithanomsat, Sci. Rep., 11, 1896 (2021); https://doi.org/10.1038/s41598-021-81386-2
- M.A. Soliman, D.A. Emam, H.M. Swailam, M.A. Swelim and S.A. Rezk, Egyptian J. Radiat. Sci. Appl., 35, 69 (2023); https://doi.org/10.21608/ejrsa.2023.167331.1140
- L. Feng, J. Yan, Z. Jiang, X. Chen, Z. Li, J. Liu, X. Qian, Z. Liu, G. Liu, C. Liu, Y. Wang, G. Hu, W. Dong and Z. Cui, Int. J. Biol. Macromol., 232, 123366 (2023); https://doi.org/10.1016/j.ijbiomac.2023.123366
- S.A. Rezk, D.A. Emam, H.M. Swailam and M.A. Swelim, Arab J. Nuclear Sci. Appl., 53, 111 (2020); https://doi.org/10.21608/ajnsa.2020.16698.1266
- N.T.T. Thu, L.H. Hoang, P.K. Cuong, N. Viet-Linh, T.T.H. Nga, D.D. Kim and L.T. Nhi-Cong, Sci. Rep., 13, 3137 (2023); https://doi.org/10.1038/s41598-023-28220-z
- A. Ylinen, H. Maaheimo, A. Anghelescu-Hakala, M. Penttilä, L. Salusjärvi and M. Toivari, J. Ind. Microbiol. Biotechnol., 48, 028 (2021); https://doi.org/10.1093/jimb/kuab028
- S.Z. Zisha, T. Mumtaz and A.K.M.R. Alam, Biol. Environ. Pollut., 2, 7 (2022).
- S. Obruèa, P. Dvoøák, P. Sedláèek, M. Koller, K. Sedláø, I. Pernicová and D. Šafránek, Biotechnol. Adv., 58, 107906 (2022); https://doi.org/10.1016/j.biotechadv.2022.107906
- T.T. Loan, D.T.Q. Trang, P.Q. Huy, P.X. Ninh and D.V. Thuoc, Biotechnol. Rep., 33, e00700 (2022); https://doi.org/10.1016/j.btre.2022.e00700
- A.W. Danial, S.M. Hamdy, S.A. Alrumman, S.M.F. Gad El-Rab, A.A.M. Shoreit and A.E.-L. Hesham, Microorganisms, 9, 2395 (2021); https://doi.org/10.3390/microorganisms9112395
- S. Murugan, S. Duraisamy, S. Balakrishnan, A. Kumarasamy, P. Subramani and A. Raju, Biol. Futur., 72, 497 (2021); https://doi.org/10.1007/s42977-021-00099-9
- F. Saad, E. Efstathiou, G. Attard, T.W. Flaig, F. Franke, O.B. Goodman Jr., S. Oudard, T. Steuber, H. Suzuki, D. Wu, K. Yeruva, P. De Porre, S. Brookman-May, S. Li, J. Li, S. Thomas, K.B. Bevans, S.D. Mundle, S.A. McCarthy and D.E. Rathkopf, Lancet Oncol., 22, 1541 (2021); https://doi.org/10.1016/S1470-2045(21)00402-2
- M. Kokila and G. Punamalai, Uttar Pradesh J. Zool., 42, 41 (2021).
- R.G. Saratale, S.K. Cho, G.D. Saratale, G.S. Ghodake, R.N. Bharagava, D.S. Kim,, S. Nair and H.S. Shin, Bioresour. Technol., 324, 124673 (2021); https://doi.org/10.1016/j.biortech.2021.124673
- A. Sathish, K. Glaittli, R.C. Sims and C.D. Miller, J. Polym. Environ., 22, 272 (2014); https://doi.org/10.1007/s10924-014-0647-x
- R.R. Dalsasso, F.A. Pavan, S.E. Bordignon, G.M.F. de Aragão and P. Poletto, Process Biochem., 85, 12 (2019); https://doi.org/10.1016/j.procbio.2019.07.007
- V. Sharma, S. Misra and A.K. Srivastava, Biocatal. Agric. Biotechnol., 10, 122 ( (2017); https://doi.org/10.1016/j.bcab.2017.02.014
- S. Obruca, P. Sedlacek, V. Krzyzanek, F. Mravec, K. Hrubanova, O. Samek, D. Kucera, P. Benesova and I. Marova, PLoS One, 11, e0157778 (2016); https://doi.org/10.1371/journal.pone.0157778
- K.S. Heng, R. Hatti-Kaul, F. Adam, T. Fukui and K. Sudesh, J. Chem. Technol. Biotechnol., 92, 100 (2017); https://doi.org/10.1002/jctb.4993
- N.V. Ramadas, S.K. Singh, C.R. Soccol and A. Pandey, Braz. Arch. Biol. Technol., 52, 17 (2009); https://doi.org/10.1590/S1516-89132009000100003
- Y. Zhang, W. Sun, H. Wang and A. Geng, Bioresour. Technol., 147, 307 (2013); https://doi.org/10.1016/j.biortech.2013.08.029
- G. Singh, A. Kumari, A. Mittal, A. Yadav and N.K. Aggarwal, BioMed Res. Int., 2013, 952641 (2013); https://doi.org/10.1155/2013/952641
- B. Elsayed Belal, Curr. Res. J. Biol., 5, 273 (2013).
- A.D. Tripathi, A. Yadav, A. Jha and S.K. Srivastava, J. Polym. Environ., 20, 446 (2012); https://doi.org/10.1007/s10924-011-0394-1
- S. Obruca, I. Marova, O. Snajdar, L. Mravcova and Z. Svoboda, Biotechnol. Lett., 32, 1925 (2010); https://doi.org/10.1007/s10529-010-0376-8
- C. Simon-Colin, G. Raguénès, P. Crassous, X. Moppert and J. Guezennec, Int. J. Biol. Macromol., 43, 176 (2008); https://doi.org/10.1016/j.ijbiomac.2008.04.011
- M. Goff, P.G. Ward and K.E. O’Connor, J. Biotechnol., 132, 283 (2007); https://doi.org/10.1016/j.jbiotec.2007.03.016
- A. Yezza, A. Halasz, W. Levadoux and J. Hawari, Appl. Microbiol. Biotechnol., 77, 269 (2007); https://doi.org/10.1007/s00253-007-1158-7
- J. Parshad, S. Suneja, K. Kukreja and K. Lakshminarayana, Folia Microbiol., 46, 315 (2001); https://doi.org/10.1007/BF02815620
- D. Rohini, S. Phadnis and S.K. Rawal, Int. J. Biotechnol., 5, 276 (2006).
- A.G. Ostle and J.G. Holt, Appl. Environ. Microbiol., 44, 238 (1982); https://doi.org/10.1128/aem.44.1.238-241.1982
- M. Nishida, T. Tanaka, Y. Hayakawa and M. Nishida, Polymers, 10, 506 (2018); https://doi.org/10.3390/polym10050506
- S. Krishnan, G.S. Chinnadurai and P. Perumal, Int. J. Biol. Macromol., 104, 1165 (2017); https://doi.org/10.1016/j.ijbiomac.2017.07.028
- J. Juengert, S. Bresan and D. Jendrossek, Bio Protoc., 8, e2748 (2018); https://doi.org/10.21769/BioProtoc.2748
- P. Spiekermann, B.H. Rehm, R. Kalscheuer, D. Baumeister and A. Steinbüchel, Arch. Microbiol., 171, 73 (1999); https://doi.org/10.1007/s002030050681
- K. Sreya, K. Prabhat Singh and A. Sharan Vidyarthi, Afr. J. Biotechnol., 11, 7934 (2012).
- A.D. Tripathi and S.K. Srivastava, J. Polym. Environ., 19, 732 (2011); https://doi.org/10.1007/s10924-011-0324-2
- J. Tian, A. He, A.G. Lawrence, P. Liu, N. Watson, A.J. Sinskey and J. Stubbe, J. Bacteriol., 187, 3825 (2005); https://doi.org/10.1128/JB.187.11.3825-3832.2005
- A.A. Aljuraifani, M.M. Berekaa and A.A. Ghazwani, Microbiology Open, 8, e00755 (2019); https://doi.org/10.1002/mbo3.755
- R.A.J. Verlinden, D.J. Hill, M.A. Kenward, C.D. Williams and I. Radecka, J. Appl. Microbiol., 102, 1437 (2007); https://doi.org/10.1111/j.1365-2672.2007.03335.x
- A.K. Singh, J.K. Srivastava, A.K. Chandel, L. Sharma, N. Mallick and S.P. Singh, Appl. Microbiol. Biotechnol., 103, 2007 (2019); https://doi.org/10.1007/s00253-018-09604-y
- A. Aragosa, V. Specchia and M. Frigione, Proceedings, 69, 5 (2021); https://doi.org/10.3390/CGPM2020-07226
- J.M. El-Mohamedy Hawas, T.E.-S. El-Banna, E.B. Abdelmonteleb Belal and A.A.A. El-Aziz, Int. J. Curr. Microbiol. Appl. Sci., 5, 10 (2016); https://doi.org/10.20546/ijcmas.2016.501.002
- S. Josiane, A. Santos, L. Polese, C. Marisa and R. Clovis, Eclét. Quím., 31, 49 (2005).
- J.Y. Choi, J.K. Lee, Y. You and W.H. Park, Fibers Polym., 4, 195 (2003); https://doi.org/10.1007/BF02908278
- B. Mongili, A. Abdel Azim, S. Fraterrigo Garofalo, E. Batuecas, A. Re, S. Bocchini and D. Fino, Biotechnol. Biofuels, 14, 13 (2021); https://doi.org/10.1186/s13068-020-01849-y
- A. Aramvash, F. Moazzeni Zavareh and N. Gholami Banadkuki, Eng. Life Sci., 18, 20 (2017); https://doi.org/10.1002/elsc.201700102
- B. Kunasundari, V. Murugaiyah, G. Kaur, F.H.J. Maurer and K. Sudesh, PLoS One, 8, e78528 (2013); https://doi.org/10.1371/journal.pone.0078528
- T. Fei, S. Cazeneuve, Z. Wen, L. Wu and T. Wang, Biotechnol. Prog., 32, 678 (2016); https://doi.org/10.1002/btpr.2247
- M.L. Fiorese, F. Freitas, J. Pais, A.M. Ramos, G.M.F. de Aragao and M.A.M. Reis, Eng. Life Sci., 9, 454 (2009); https://doi.org/10.1002/elsc.200900034
- B. McAdam, M. Brennan Fournet, P. McDonald and M. Mojicevic, Polymers, 12, 2908 (2020); https://doi.org/10.3390/polym12122908
- N. Altaee, G.A. El-Hiti, A. Fahdil, K. Sudesh and E. Yousif, SpringerPlus, 5, 762 (2016); https://doi.org/10.1186/s40064-016-2480-2
- C.R. Hankermeyer and R.S. Tjeerdema, Rev. Environ. Contam. Toxicol., 159, 1 (1999); https://doi.org/10.1007/978-1-4612-1496-0_1
- A.K. Urbanek, W. Rymowicz and A.M. Miroñczuk, Appl. Microbiol. Biotechnol., 102, 7669 (2018); https://doi.org/10.1007/s00253-018-9195-y
- N. Korotkova and M.E. Lidstrom, J. Bacteriol., 183, 1038 (2001); https://doi.org/10.1128/JB.183.3.1038-1046.2001
- F. Amini, D. Semnani, S. Karbasi and S.N. Banitaba, Int. J. Polym. Mater., 68, 772 (2019); https://doi.org/10.1080/00914037.2018.1506982
- M. Parsian, P. Mutlu, S. Yalcin and U. Gunduz, Anticancer. Agents Med. Chem., 20, 1233 (2020); https://doi.org/10.2174/1871520620666200310091026
- S.R. Kumar Pandian, S. Kunjiappan, P. Pavadai, V. Sundarapandian, V. Chandramohan and K. Sundar, Drug Res., 72, 72 (2022); https://doi.org/10.1055/a-1640-0009
- A.E. Aguilar-Rabiela, E.M. Hernández-Cooper, J.A. Otero and B. Vergara-Porras, Int. J. Biol. Macromol., 144, 47 (2020); https://doi.org/10.1016/j.ijbiomac.2019.11.242
- M. Degli Esposti, F. Chiellini, F. Bondioli, D. Morselli and P. Fabbri, Paola. Mater. Sci. Eng., 100, 286 (2019); https://doi.org/10.1016/j.msec.2019.03.014
- D. Nygaard, O. Yashchuk, D.G. Noseda, B. Araoz and É.B. Hermida, Heliyon, 7, e05979 (2021); https://doi.org/10.1016/j.heliyon.2021.e05979
- J.M. Naranjo, J.A. Posada, J.C. Higuita and C.A. Cardona, Bioresour. Technol., 133, 38 (2013); https://doi.org/10.1016/j.biortech.2013.01.129
- A. Mohan, M. Girdhar, R. Kumar, H.S. Chaturvedi, A. Vadhel, P.R. Solanki, A. Kumar, D. Kumar and N. Mamidi, Pharmaceuticals, 14, 1163 (2021); https://doi.org/10.3390/ph14111163
- M. Mohammadalipour, S. Karbasi, T. Behzad, Z. Mohammadalipour and M. Zamani, Int. J. Biol. Macromol., 220, 1402 (2022); https://doi.org/10.1016/j.ijbiomac.2022.09.118
- M. Movahedi and S. Karbasi, Int. J. Biol. Macromol., 214, 301 (2022); https://doi.org/10.1016/j.ijbiomac.2022.06.072
- M. Li, K. Eskridge, E. Liu and M. Wilkins, Bioresour. Technol., 281, 99 (2019); https://doi.org/10.1016/j.biortech.2019.02.045
- F.I. Butt, N. Muhammad, A. Hamid, M. Moniruzzaman and F. Sharif, Int. J. Biol. Macromol., 120, 1294 (2018); https://doi.org/10.1016/j.ijbiomac.2018.09.002
- D. Sabarinathan, S.P. Chandrika, P. Venkatraman, M. Easwaran, C.S. Sureka and K. Preethi, Inform. Med. Unlocked, 11, 61 (2018); https://doi.org/10.1016/j.imu.2018.04.009
- P. Cataldi, P. Steiner, T. Raine, K. Lin, C. Kocabas, R.J. Young, M. Bissett, I.A. Kinloch and D.G. Papageorgiou, ACS Appl. Polym. Mater., 2, 3525 (2020); https://doi.org/10.1021/acsapm.0c00539
- A. Yao, Z. Li, J. Lyu, L. Yu, S. Wei, L. Xue, H. Wang and G.-Q. Chen, Appl. Microbiol. Biotechnol., 105, 6229 (2021); https://doi.org/10.1007/s00253-021-11482-w
- N. Soda, Z.J. Gonzaga, S. Chen, K.M. Koo, N.T. Nguyen, M.J. Shiddiky and B.H. Rehm, ACS Appl. Mater. Interfaces, 13, 31418 (2021); https://doi.org/10.1021/acsami.1c05355
- J. Fernández, P. Saettone, M.C. Franchini, C.J. Villar and F. Lombó, Int. J. Biol. Macromol., 203, 638 (2022); https://doi.org/10.1016/j.ijbiomac.2022.01.112
- M.D.B.M. de Azevedo, V.H. Melo, C.R. Soares, L.F. Gamarra, C.H. Barros and L. Tasic, Int. J. Nanomedicine, 14, 6869 (2019); https://doi.org/10.2147/IJN.S191274
- D. Zhao, H. Song, X. Zhou, Y. Chen, Q. Liu, X. Gao, X. Zhu and D. Chen, Eur. J. Pharm. Sci., 134, 145 (2019); https://doi.org/10.1016/j.ejps.2019.03.021
- D.M. Yebra, S. Kiil and K. Dam-Johansen, Prog. Org. Coat., 50, 75 (2004); https://doi.org/10.1016/j.porgcoat.2003.06.001
- A. Guennec, L. Brelle, E. Balnois, I. Linossier, E. Renard, V. Langlois, F. Faÿ, G.Q. Chen, C. Simon-Colin and K. Vallée-Réhel, Biofouling, 37, 894 (2021); https://doi.org/10.1080/08927014.2021.1981298
- M. González Oller, Master’s thesis, Universitat Politècnica de Catalunya,
References
P. Mehta, D. Singh, R. Saxena, R. Rani, R.P. Gupta, S.K. Puri and A.S. Mathur, Waste to Wealth, Springer: Singapore, pp. 343-363 (2018).
R. Madadi, H. Maljaee, L.S. Serafim and S.P.M. Ventura, Mar. Drugs, 19, 4466 (2021); https://doi.org/10.3390/md19080466
D.H. Vu, D. Åkesson, M.J. Taherzadeh and J.A. Ferreira, Bioresour. Technol., 298, 122393 (2020); https://doi.org/10.1016/j.biortech.2019.122393
S. Abid, Z.A. Raza and T. Hussain, 3 Biotech, 6, 142 (2016); https://doi.org/10.1007/s13205-016-0452-4
J. Kaparapu, J. New Biol. Rep., 7, 68 (2018).
A. Aragosa, V. Specchia and M. Frigione, Proceedings, 69, 5 (2021); https://doi.org/10.3390/CGPM2020-07226
U. Ushani, A.R. Sumayya, G. Archana, J. Rajesh Banu and J. Dai, Enzymes/Biocatalysts and Bioreactors for Valorization of Food Wastes, In: Food Waste to Valuable Resources, Academic Press, pp. 211-233 (2020); https://doi.org/10.1016/B978-0-12-818353-3.00010-9
Data Bridge Market Research, article No. 323 (2023) (Accessed on 15th June 2023); https://www.databridgemarketresearch.com/reports/global-polyhydroxyalkanoate-pha-market
S. Almeida, A. Raposo, M. Almeida-González and C. Carrascosa, Compr. Rev. Food Sci. Food Saf., 17, 1503 (2018); https://doi.org/10.1111/1541-4337.12388
Bioplastics Market Data 2022—A Global Production Capacities of Bioplastics 2022–2027, European Bioplastics (2022) (Accessed on 15th June 2023); https://www.european-bioplastics.org/market/
Geneva Environment Network (2023); (Accessed on 15th June 2023); https://www.genevaenvironmentnetwork.org/resources/updates/plastics-and-health/
V. Marchal, R.D.V. van Dellink, C. Clapp, J. Château, B.M.J. Eliza and V. van Lanzi, Climate change. In: OECD Environmental Outlook to 2050, 14(1), 13 (2011).
R. Ganesh Saratale, S.-K. Cho, G. Dattatraya Saratale, A.A. Kadam, G.S. Ghodake, M. Kumar, R. Naresh Bharagava, G. Kumar, D. Su Kim, S.I. Mulla and H. Seung Shin, Bioresour. Technol., 325, 124685 (2021); https://doi.org/10.1016/j.biortech.2021.124685
J.C.C. Yeo, J.K. Muiruri, W. Thitsartarn, Z. Li and C. He, Mater. Sci. Eng. C, 92, 1092 (2018); https://doi.org/10.1016/j.msec.2017.11.006
A. Getachew and F. Woldesenbet, BMC Res. Notes, 9, 509 (2016); https://doi.org/10.1186/s13104-016-2321-y
M. Müller-Santos, J.J. Koskimäki L.P.S. Alves, E.M. de Souza, D. Jendrossek and A.M. Pirttilä, FEMS Microbiol. Rev., 45, fuaa058 (2021); https://doi.org/10.1093/femsre/fuaa058
M.R. Jangra, K.S. Ikbal, S.J. Pippal and V.K. Sikka, Biochem. Biophys. Res. Commun., 11, 97 (2018); https://doi.org/10.21786/bbrc/11.1/14
C. Nielsen, A. Rahman, A.U. Rehman, M.K. Walsh and C.D. Miller, Microb. Biotechnol., 10, 1338 (2017); https://doi.org/10.1111/1751-7915.12776
S. Obruèa, P. Dvoøák, P. Sedláèek, M. Koller, K. Sedláø, I. Pernicová and D. Šafránek, Biotechnol. Adv., 58, 107906 (2022); https://doi.org/10.1016/j.biotechadv.2022.107906
L. Vinet and A. Zhedanov, J. Phys. A Math. Theor., 44, 085201 (2011); https://doi.org/10.1088/1751-8113/44/8/085201
P. Sharma, R. Munir, W. Blunt, C. Dartiailh, J. Cheng, T.C. Charles and D.B. Levin, Appl. Sci., 7, 242 (2017); https://doi.org/10.3390/app7030242
G.D. Koning, Can. J. Microbiol., 41, 303 (1995); https://doi.org/10.1139/m95-201
S.K. Hahn and Y.K. Chang, Biotechnol. Technol.., 9, 873 (1995); https://doi.org/10.1007/BF00158539
A.C. Hayward, W.G.C. Forsyth and J.B. Roberts, J. Gen. Microbiol., 20, 510 (1959); https://doi.org/10.1099/00221287-20-3-510
P.J. Senior, G.A. Beech, G.A.F. Ritchie and E.A. Dawes, Biochem. J., 128, 1193 (1972); https://doi.org/10.1042/bj1281193
J.H. Law and R.A. Slepecky, J. Bacteriol., 82, 33 (1961); https://doi.org/10.1128/jb.82.1.33-36.1961
E. Markl, H. Grünbichler and M. Lackner, Cyanobacteria for PHB Bioplastics Production: A Review, IntechOpen (2019); https://doi.org/10.5772/intechopen.81536
S. Soni, V. Chhokar, V. Beniwal, R. Kumar, H. Badgujjar, R. Chauhan, S. Dudeja and A. Kumar, Int. J. Biol. Macromol., 233, 123575 (2023); https://doi.org/10.1016/j.ijbiomac.2023.123575
A. Manna, S. Pal and A.K. Paul, Acta Biol. Hung., 51, 73 (2000); https://doi.org/10.1007/BF03542967
K. Tajima, H. Tannai, Y. Satoh and M. Munekata, Polym. J., 35, 407 (2003); https://doi.org/10.1295/polymj.35.407
N.D. Ayub, M.J. Pettinari, J.A. Ruiz and N.I. López, Curr. Microbiol., 49, 170 (2004); https://doi.org/10.1007/s00284-004-4254-2
K. Sujatha and R. Shenbagarathai, Lett. Appl. Microbiol., 43, 607 (2006); https://doi.org/10.1111/j.1472-765X.2006.02016.x
M. Yilmaz, H. Soran and Y. Beyatli, Microbiol. Res., 161, 127 (2006); https://doi.org/10.1016/j.micres.2005.07.001
E. Rueda and J. García, Sci. Total Environ., 800, 149561 (2021); https://doi.org/10.1016/j.scitotenv.2021.149561
L. Sharma and N. Mallick, Bioresour. Technol., 96, 1304 (2005); https://doi.org/10.1016/j.biortech.2004.10.009
S. Ansari and T. Fatma, PLoS One, 11, e0158168 (2016); https://doi.org/10.1371/journal.pone.0158168
P. Murugan, L. Han, C.Y. Gan, F.H. Maurer and K. Sudesh, J. Biotechnol., 239, 98 (2016); https://doi.org/10.1016/j.jbiotec.2016.10.012
B.S. Saharan, A. Grewal and P. Kumar, Chin. J. Biol., 2014, 802984 (2014); https://doi.org/10.1155/2014/802984
M. Mariotto, S. Egloff, I. Fritz and D. Refardt, Algal Res., 70, 103013 (2023); https://doi.org/10.1016/j.algal.2023.103013
M.G. de Morais, B. da Silva Vaz, E.G. de Morais and J.A.V. Costa, Biomed. Res. Int., 2015, 835761 (2015); https://doi.org/10.1155/2015/835761
F. Hempel, A.S. Bozarth, N. Lindenkamp, A. Klingl, S. Zauner, U. Linne, A. Steinbüchel and U.G. Maier, Microb. Cell Fact., 10, 81 (2011); https://doi.org/10.1186/1475-2859-10-81
G. Kavitha, C. Kurinjimalar, K. Sivakumar, M. Kaarthik, R. Aravind, P. Palani and R. Rengasamy, Int. J. Biol. Macromol., 93, 534 (2016); https://doi.org/10.1016/j.ijbiomac.2016.09.019
C. Trakunjae, A. Boondaeng, W. Apiwatanapiwat, A. Kosugi, T. Arai, K. Sudesh and P. Vaithanomsat, Sci. Rep., 11, 1896 (2021); https://doi.org/10.1038/s41598-021-81386-2
M.A. Soliman, D.A. Emam, H.M. Swailam, M.A. Swelim and S.A. Rezk, Egyptian J. Radiat. Sci. Appl., 35, 69 (2023); https://doi.org/10.21608/ejrsa.2023.167331.1140
L. Feng, J. Yan, Z. Jiang, X. Chen, Z. Li, J. Liu, X. Qian, Z. Liu, G. Liu, C. Liu, Y. Wang, G. Hu, W. Dong and Z. Cui, Int. J. Biol. Macromol., 232, 123366 (2023); https://doi.org/10.1016/j.ijbiomac.2023.123366
S.A. Rezk, D.A. Emam, H.M. Swailam and M.A. Swelim, Arab J. Nuclear Sci. Appl., 53, 111 (2020); https://doi.org/10.21608/ajnsa.2020.16698.1266
N.T.T. Thu, L.H. Hoang, P.K. Cuong, N. Viet-Linh, T.T.H. Nga, D.D. Kim and L.T. Nhi-Cong, Sci. Rep., 13, 3137 (2023); https://doi.org/10.1038/s41598-023-28220-z
A. Ylinen, H. Maaheimo, A. Anghelescu-Hakala, M. Penttilä, L. Salusjärvi and M. Toivari, J. Ind. Microbiol. Biotechnol., 48, 028 (2021); https://doi.org/10.1093/jimb/kuab028
S.Z. Zisha, T. Mumtaz and A.K.M.R. Alam, Biol. Environ. Pollut., 2, 7 (2022).
S. Obruèa, P. Dvoøák, P. Sedláèek, M. Koller, K. Sedláø, I. Pernicová and D. Šafránek, Biotechnol. Adv., 58, 107906 (2022); https://doi.org/10.1016/j.biotechadv.2022.107906
T.T. Loan, D.T.Q. Trang, P.Q. Huy, P.X. Ninh and D.V. Thuoc, Biotechnol. Rep., 33, e00700 (2022); https://doi.org/10.1016/j.btre.2022.e00700
A.W. Danial, S.M. Hamdy, S.A. Alrumman, S.M.F. Gad El-Rab, A.A.M. Shoreit and A.E.-L. Hesham, Microorganisms, 9, 2395 (2021); https://doi.org/10.3390/microorganisms9112395
S. Murugan, S. Duraisamy, S. Balakrishnan, A. Kumarasamy, P. Subramani and A. Raju, Biol. Futur., 72, 497 (2021); https://doi.org/10.1007/s42977-021-00099-9
F. Saad, E. Efstathiou, G. Attard, T.W. Flaig, F. Franke, O.B. Goodman Jr., S. Oudard, T. Steuber, H. Suzuki, D. Wu, K. Yeruva, P. De Porre, S. Brookman-May, S. Li, J. Li, S. Thomas, K.B. Bevans, S.D. Mundle, S.A. McCarthy and D.E. Rathkopf, Lancet Oncol., 22, 1541 (2021); https://doi.org/10.1016/S1470-2045(21)00402-2
M. Kokila and G. Punamalai, Uttar Pradesh J. Zool., 42, 41 (2021).
R.G. Saratale, S.K. Cho, G.D. Saratale, G.S. Ghodake, R.N. Bharagava, D.S. Kim,, S. Nair and H.S. Shin, Bioresour. Technol., 324, 124673 (2021); https://doi.org/10.1016/j.biortech.2021.124673
A. Sathish, K. Glaittli, R.C. Sims and C.D. Miller, J. Polym. Environ., 22, 272 (2014); https://doi.org/10.1007/s10924-014-0647-x
R.R. Dalsasso, F.A. Pavan, S.E. Bordignon, G.M.F. de Aragão and P. Poletto, Process Biochem., 85, 12 (2019); https://doi.org/10.1016/j.procbio.2019.07.007
V. Sharma, S. Misra and A.K. Srivastava, Biocatal. Agric. Biotechnol., 10, 122 ( (2017); https://doi.org/10.1016/j.bcab.2017.02.014
S. Obruca, P. Sedlacek, V. Krzyzanek, F. Mravec, K. Hrubanova, O. Samek, D. Kucera, P. Benesova and I. Marova, PLoS One, 11, e0157778 (2016); https://doi.org/10.1371/journal.pone.0157778
K.S. Heng, R. Hatti-Kaul, F. Adam, T. Fukui and K. Sudesh, J. Chem. Technol. Biotechnol., 92, 100 (2017); https://doi.org/10.1002/jctb.4993
N.V. Ramadas, S.K. Singh, C.R. Soccol and A. Pandey, Braz. Arch. Biol. Technol., 52, 17 (2009); https://doi.org/10.1590/S1516-89132009000100003
Y. Zhang, W. Sun, H. Wang and A. Geng, Bioresour. Technol., 147, 307 (2013); https://doi.org/10.1016/j.biortech.2013.08.029
G. Singh, A. Kumari, A. Mittal, A. Yadav and N.K. Aggarwal, BioMed Res. Int., 2013, 952641 (2013); https://doi.org/10.1155/2013/952641
B. Elsayed Belal, Curr. Res. J. Biol., 5, 273 (2013).
A.D. Tripathi, A. Yadav, A. Jha and S.K. Srivastava, J. Polym. Environ., 20, 446 (2012); https://doi.org/10.1007/s10924-011-0394-1
S. Obruca, I. Marova, O. Snajdar, L. Mravcova and Z. Svoboda, Biotechnol. Lett., 32, 1925 (2010); https://doi.org/10.1007/s10529-010-0376-8
C. Simon-Colin, G. Raguénès, P. Crassous, X. Moppert and J. Guezennec, Int. J. Biol. Macromol., 43, 176 (2008); https://doi.org/10.1016/j.ijbiomac.2008.04.011
M. Goff, P.G. Ward and K.E. O’Connor, J. Biotechnol., 132, 283 (2007); https://doi.org/10.1016/j.jbiotec.2007.03.016
A. Yezza, A. Halasz, W. Levadoux and J. Hawari, Appl. Microbiol. Biotechnol., 77, 269 (2007); https://doi.org/10.1007/s00253-007-1158-7
J. Parshad, S. Suneja, K. Kukreja and K. Lakshminarayana, Folia Microbiol., 46, 315 (2001); https://doi.org/10.1007/BF02815620
D. Rohini, S. Phadnis and S.K. Rawal, Int. J. Biotechnol., 5, 276 (2006).
A.G. Ostle and J.G. Holt, Appl. Environ. Microbiol., 44, 238 (1982); https://doi.org/10.1128/aem.44.1.238-241.1982
M. Nishida, T. Tanaka, Y. Hayakawa and M. Nishida, Polymers, 10, 506 (2018); https://doi.org/10.3390/polym10050506
S. Krishnan, G.S. Chinnadurai and P. Perumal, Int. J. Biol. Macromol., 104, 1165 (2017); https://doi.org/10.1016/j.ijbiomac.2017.07.028
J. Juengert, S. Bresan and D. Jendrossek, Bio Protoc., 8, e2748 (2018); https://doi.org/10.21769/BioProtoc.2748
P. Spiekermann, B.H. Rehm, R. Kalscheuer, D. Baumeister and A. Steinbüchel, Arch. Microbiol., 171, 73 (1999); https://doi.org/10.1007/s002030050681
K. Sreya, K. Prabhat Singh and A. Sharan Vidyarthi, Afr. J. Biotechnol., 11, 7934 (2012).
A.D. Tripathi and S.K. Srivastava, J. Polym. Environ., 19, 732 (2011); https://doi.org/10.1007/s10924-011-0324-2
J. Tian, A. He, A.G. Lawrence, P. Liu, N. Watson, A.J. Sinskey and J. Stubbe, J. Bacteriol., 187, 3825 (2005); https://doi.org/10.1128/JB.187.11.3825-3832.2005
A.A. Aljuraifani, M.M. Berekaa and A.A. Ghazwani, Microbiology Open, 8, e00755 (2019); https://doi.org/10.1002/mbo3.755
R.A.J. Verlinden, D.J. Hill, M.A. Kenward, C.D. Williams and I. Radecka, J. Appl. Microbiol., 102, 1437 (2007); https://doi.org/10.1111/j.1365-2672.2007.03335.x
A.K. Singh, J.K. Srivastava, A.K. Chandel, L. Sharma, N. Mallick and S.P. Singh, Appl. Microbiol. Biotechnol., 103, 2007 (2019); https://doi.org/10.1007/s00253-018-09604-y
A. Aragosa, V. Specchia and M. Frigione, Proceedings, 69, 5 (2021); https://doi.org/10.3390/CGPM2020-07226
J.M. El-Mohamedy Hawas, T.E.-S. El-Banna, E.B. Abdelmonteleb Belal and A.A.A. El-Aziz, Int. J. Curr. Microbiol. Appl. Sci., 5, 10 (2016); https://doi.org/10.20546/ijcmas.2016.501.002
S. Josiane, A. Santos, L. Polese, C. Marisa and R. Clovis, Eclét. Quím., 31, 49 (2005).
J.Y. Choi, J.K. Lee, Y. You and W.H. Park, Fibers Polym., 4, 195 (2003); https://doi.org/10.1007/BF02908278
B. Mongili, A. Abdel Azim, S. Fraterrigo Garofalo, E. Batuecas, A. Re, S. Bocchini and D. Fino, Biotechnol. Biofuels, 14, 13 (2021); https://doi.org/10.1186/s13068-020-01849-y
A. Aramvash, F. Moazzeni Zavareh and N. Gholami Banadkuki, Eng. Life Sci., 18, 20 (2017); https://doi.org/10.1002/elsc.201700102
B. Kunasundari, V. Murugaiyah, G. Kaur, F.H.J. Maurer and K. Sudesh, PLoS One, 8, e78528 (2013); https://doi.org/10.1371/journal.pone.0078528
T. Fei, S. Cazeneuve, Z. Wen, L. Wu and T. Wang, Biotechnol. Prog., 32, 678 (2016); https://doi.org/10.1002/btpr.2247
M.L. Fiorese, F. Freitas, J. Pais, A.M. Ramos, G.M.F. de Aragao and M.A.M. Reis, Eng. Life Sci., 9, 454 (2009); https://doi.org/10.1002/elsc.200900034
B. McAdam, M. Brennan Fournet, P. McDonald and M. Mojicevic, Polymers, 12, 2908 (2020); https://doi.org/10.3390/polym12122908
N. Altaee, G.A. El-Hiti, A. Fahdil, K. Sudesh and E. Yousif, SpringerPlus, 5, 762 (2016); https://doi.org/10.1186/s40064-016-2480-2
C.R. Hankermeyer and R.S. Tjeerdema, Rev. Environ. Contam. Toxicol., 159, 1 (1999); https://doi.org/10.1007/978-1-4612-1496-0_1
A.K. Urbanek, W. Rymowicz and A.M. Miroñczuk, Appl. Microbiol. Biotechnol., 102, 7669 (2018); https://doi.org/10.1007/s00253-018-9195-y
N. Korotkova and M.E. Lidstrom, J. Bacteriol., 183, 1038 (2001); https://doi.org/10.1128/JB.183.3.1038-1046.2001
F. Amini, D. Semnani, S. Karbasi and S.N. Banitaba, Int. J. Polym. Mater., 68, 772 (2019); https://doi.org/10.1080/00914037.2018.1506982
M. Parsian, P. Mutlu, S. Yalcin and U. Gunduz, Anticancer. Agents Med. Chem., 20, 1233 (2020); https://doi.org/10.2174/1871520620666200310091026
S.R. Kumar Pandian, S. Kunjiappan, P. Pavadai, V. Sundarapandian, V. Chandramohan and K. Sundar, Drug Res., 72, 72 (2022); https://doi.org/10.1055/a-1640-0009
A.E. Aguilar-Rabiela, E.M. Hernández-Cooper, J.A. Otero and B. Vergara-Porras, Int. J. Biol. Macromol., 144, 47 (2020); https://doi.org/10.1016/j.ijbiomac.2019.11.242
M. Degli Esposti, F. Chiellini, F. Bondioli, D. Morselli and P. Fabbri, Paola. Mater. Sci. Eng., 100, 286 (2019); https://doi.org/10.1016/j.msec.2019.03.014
D. Nygaard, O. Yashchuk, D.G. Noseda, B. Araoz and É.B. Hermida, Heliyon, 7, e05979 (2021); https://doi.org/10.1016/j.heliyon.2021.e05979
J.M. Naranjo, J.A. Posada, J.C. Higuita and C.A. Cardona, Bioresour. Technol., 133, 38 (2013); https://doi.org/10.1016/j.biortech.2013.01.129
A. Mohan, M. Girdhar, R. Kumar, H.S. Chaturvedi, A. Vadhel, P.R. Solanki, A. Kumar, D. Kumar and N. Mamidi, Pharmaceuticals, 14, 1163 (2021); https://doi.org/10.3390/ph14111163
M. Mohammadalipour, S. Karbasi, T. Behzad, Z. Mohammadalipour and M. Zamani, Int. J. Biol. Macromol., 220, 1402 (2022); https://doi.org/10.1016/j.ijbiomac.2022.09.118
M. Movahedi and S. Karbasi, Int. J. Biol. Macromol., 214, 301 (2022); https://doi.org/10.1016/j.ijbiomac.2022.06.072
M. Li, K. Eskridge, E. Liu and M. Wilkins, Bioresour. Technol., 281, 99 (2019); https://doi.org/10.1016/j.biortech.2019.02.045
F.I. Butt, N. Muhammad, A. Hamid, M. Moniruzzaman and F. Sharif, Int. J. Biol. Macromol., 120, 1294 (2018); https://doi.org/10.1016/j.ijbiomac.2018.09.002
D. Sabarinathan, S.P. Chandrika, P. Venkatraman, M. Easwaran, C.S. Sureka and K. Preethi, Inform. Med. Unlocked, 11, 61 (2018); https://doi.org/10.1016/j.imu.2018.04.009
P. Cataldi, P. Steiner, T. Raine, K. Lin, C. Kocabas, R.J. Young, M. Bissett, I.A. Kinloch and D.G. Papageorgiou, ACS Appl. Polym. Mater., 2, 3525 (2020); https://doi.org/10.1021/acsapm.0c00539
A. Yao, Z. Li, J. Lyu, L. Yu, S. Wei, L. Xue, H. Wang and G.-Q. Chen, Appl. Microbiol. Biotechnol., 105, 6229 (2021); https://doi.org/10.1007/s00253-021-11482-w
N. Soda, Z.J. Gonzaga, S. Chen, K.M. Koo, N.T. Nguyen, M.J. Shiddiky and B.H. Rehm, ACS Appl. Mater. Interfaces, 13, 31418 (2021); https://doi.org/10.1021/acsami.1c05355
J. Fernández, P. Saettone, M.C. Franchini, C.J. Villar and F. Lombó, Int. J. Biol. Macromol., 203, 638 (2022); https://doi.org/10.1016/j.ijbiomac.2022.01.112
M.D.B.M. de Azevedo, V.H. Melo, C.R. Soares, L.F. Gamarra, C.H. Barros and L. Tasic, Int. J. Nanomedicine, 14, 6869 (2019); https://doi.org/10.2147/IJN.S191274
D. Zhao, H. Song, X. Zhou, Y. Chen, Q. Liu, X. Gao, X. Zhu and D. Chen, Eur. J. Pharm. Sci., 134, 145 (2019); https://doi.org/10.1016/j.ejps.2019.03.021
D.M. Yebra, S. Kiil and K. Dam-Johansen, Prog. Org. Coat., 50, 75 (2004); https://doi.org/10.1016/j.porgcoat.2003.06.001
A. Guennec, L. Brelle, E. Balnois, I. Linossier, E. Renard, V. Langlois, F. Faÿ, G.Q. Chen, C. Simon-Colin and K. Vallée-Réhel, Biofouling, 37, 894 (2021); https://doi.org/10.1080/08927014.2021.1981298
M. González Oller, Master’s thesis, Universitat Politècnica de Catalunya,