Copyright (c) 2015 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Shape-Controlled Synthesis of GaN Nanorods and Their Photoluminescence Property
Corresponding Author(s) : Wutao Mao
Asian Journal of Chemistry,
Vol. 27 No. 2 (2015): Vol 27 Issue 2
Abstract
In this paper, an atom-economical and eco-friendly chemical synthetic route was developed to synthesize wurtzite GaN nanorods by the reaction of NaNH2 and the as-synthesized orthorhombic GaOOH nanorods in a stainless steel autoclave at 650 °C. The lengths of the GaN nanorods are in the range of 400-600 nm and the diameters are about 100-300 nm. It is interesting that the initial GaOOH structural motifs were unaffected by the high temperature chemical transformations process. The photoluminescence (PL) of GaN nanorods exhibits emission peak in the blue region, which is possibly attributable to the existence of defect.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.J. Yoon, M.-Y. Kim and J.S. Kwak, Asian J. Chem., 25, 5607 (2013); doi:10.14233/ajchem.2013.OH35.
- R.N. Chen, F.M. Gao and X.H. Gao and L. Hou, Asian J. Chem., 25, 3101 (2013); doi:10.14233/ajchem.2013.13543.
- H. Luo, K.X. Zhang, A.B. Ma, J.-H. Jiang, H.-Y. Xie, J.-F. Gong, H. Zou and W.-H. Zhu, Asian J. Chem., 25, 2080 (2013); doi:10.14233/ajchem.2013.13329s.
- D. Wang, A. Pierre, M.G. Kibria, K. Cui, X. Han, K.H. Bevan, H. Guo, S. Paradis, A.-R. Hakima and Z. Mi, Nano Lett., 11, 2353 (2011); doi:10.1021/nl2006802.
- C.Y. Chen, G. Zhu, Y. Hu, J.W. Yu, J. Song, K.Y. Cheng, L.H. Peng, L.J. Chou and Z.L. Wang, ACS Nano, 6, 5687 (2012); doi:10.1021/nn301814w.
- Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang and G. Zhang, Appl. Surf. Sci., 257, 8062 (2011); doi:10.1016/j.apsusc.2011.04.099.
- M. Sobanska, K. Klosek, Z.R. Zytkiewicz, J. Borysiuk, B.S. Witkowski, E. Lusakowska, A. Reszka and R. Jakiela, Cryst. Res. Technol., 47, 307 (2012); doi:10.1002/crat.201100408.
- G. Lukin, C. Röder, E. Niederschlag, Y. Shashev, U. Mühle, O. Pätzold, J. Kortus, D. Rafaja and M. Stelter, Cryst. Res. Technol., 47, 121 (2012); doi:10.1002/crat.201100461.
- F. Shi, D. Zhang and C. Xue, J. Alloys Comp., 509, 1294 (2011); doi:10.1016/j.jallcom.2010.10.017.
- J.J. Wang, L. Grocholl and E.G. Gillan, Nano Lett., 2, 899 (2002); doi:10.1021/nl0256356.
- K. Al-Heuseen and M.R. Hashim, Sens. Actuators B, 163, 159 (2012); doi:10.1016/j.snb.2012.01.029.
- S. Krukowski, P. Kempisty and P. Strąk, Cryst. Res. Technol., 44, 1038 (2009); doi:10.1002/crat.200900510.
- K.Y. Bao, X.Y. Bao, H. Sun, L. Yang, S. Huang and W. Yuan, Sens. Actuators B, 176, 789 (2013); doi:10.1016/j.snb.2012.09.059.
- Y. Huang, X.F. Duan, Y. Cui and C.M. Lieber, Nano Lett., 2, 101 (2002); doi:10.1021/nl015667d.
- K.Y. Bao, G. Guo, L. Zhang, R. Liu, H. Sun and Z. Zhong, J. Phys. Chem. C, 115, 13200 (2011); doi:10.1021/jp202624a.
- S. Xue, X. Zhang, R. Huang, D. Tian, H. Zhuang and C. Xue, Cryst. Growth Des., 8, 2177 (2008); doi:10.1021/cg800080b.
- X.M. Sun and Y.D. Li, Angew. Chem. Int. Ed., 43, 3827 (2004); doi:10.1002/anie.200353212.
- J. Goldberger, R.R. He, Y.F. Zhang, S.W. Lee, H.Q. Yan, H.J. Choi and P.D. Yang, Nature, 422, 599 (2003); doi:10.1038/nature01551.
- K.E. Bao, L. Shi, S. Liu, S. Xiong, X. Hu and Y. Qian, J. Alloys Comp., 472, 59 (2009); doi:10.1016/j.jallcom.2008.04.076.
- J.K. Jian, X.L. Chen, Q.Y. Tu, Y.P. Xu, L. Dai and M. Zhao, J. Phys. Chem. B, 108, 12024 (2004); doi:10.1021/jp048420o.
References
Y.J. Yoon, M.-Y. Kim and J.S. Kwak, Asian J. Chem., 25, 5607 (2013); doi:10.14233/ajchem.2013.OH35.
R.N. Chen, F.M. Gao and X.H. Gao and L. Hou, Asian J. Chem., 25, 3101 (2013); doi:10.14233/ajchem.2013.13543.
H. Luo, K.X. Zhang, A.B. Ma, J.-H. Jiang, H.-Y. Xie, J.-F. Gong, H. Zou and W.-H. Zhu, Asian J. Chem., 25, 2080 (2013); doi:10.14233/ajchem.2013.13329s.
D. Wang, A. Pierre, M.G. Kibria, K. Cui, X. Han, K.H. Bevan, H. Guo, S. Paradis, A.-R. Hakima and Z. Mi, Nano Lett., 11, 2353 (2011); doi:10.1021/nl2006802.
C.Y. Chen, G. Zhu, Y. Hu, J.W. Yu, J. Song, K.Y. Cheng, L.H. Peng, L.J. Chou and Z.L. Wang, ACS Nano, 6, 5687 (2012); doi:10.1021/nn301814w.
Z. Li, Y. Jiang, T. Yu, Z. Yang, Y. Tao, C. Jia, Z. Chen, Z. Yang and G. Zhang, Appl. Surf. Sci., 257, 8062 (2011); doi:10.1016/j.apsusc.2011.04.099.
M. Sobanska, K. Klosek, Z.R. Zytkiewicz, J. Borysiuk, B.S. Witkowski, E. Lusakowska, A. Reszka and R. Jakiela, Cryst. Res. Technol., 47, 307 (2012); doi:10.1002/crat.201100408.
G. Lukin, C. Röder, E. Niederschlag, Y. Shashev, U. Mühle, O. Pätzold, J. Kortus, D. Rafaja and M. Stelter, Cryst. Res. Technol., 47, 121 (2012); doi:10.1002/crat.201100461.
F. Shi, D. Zhang and C. Xue, J. Alloys Comp., 509, 1294 (2011); doi:10.1016/j.jallcom.2010.10.017.
J.J. Wang, L. Grocholl and E.G. Gillan, Nano Lett., 2, 899 (2002); doi:10.1021/nl0256356.
K. Al-Heuseen and M.R. Hashim, Sens. Actuators B, 163, 159 (2012); doi:10.1016/j.snb.2012.01.029.
S. Krukowski, P. Kempisty and P. Strąk, Cryst. Res. Technol., 44, 1038 (2009); doi:10.1002/crat.200900510.
K.Y. Bao, X.Y. Bao, H. Sun, L. Yang, S. Huang and W. Yuan, Sens. Actuators B, 176, 789 (2013); doi:10.1016/j.snb.2012.09.059.
Y. Huang, X.F. Duan, Y. Cui and C.M. Lieber, Nano Lett., 2, 101 (2002); doi:10.1021/nl015667d.
K.Y. Bao, G. Guo, L. Zhang, R. Liu, H. Sun and Z. Zhong, J. Phys. Chem. C, 115, 13200 (2011); doi:10.1021/jp202624a.
S. Xue, X. Zhang, R. Huang, D. Tian, H. Zhuang and C. Xue, Cryst. Growth Des., 8, 2177 (2008); doi:10.1021/cg800080b.
X.M. Sun and Y.D. Li, Angew. Chem. Int. Ed., 43, 3827 (2004); doi:10.1002/anie.200353212.
J. Goldberger, R.R. He, Y.F. Zhang, S.W. Lee, H.Q. Yan, H.J. Choi and P.D. Yang, Nature, 422, 599 (2003); doi:10.1038/nature01551.
K.E. Bao, L. Shi, S. Liu, S. Xiong, X. Hu and Y. Qian, J. Alloys Comp., 472, 59 (2009); doi:10.1016/j.jallcom.2008.04.076.
J.K. Jian, X.L. Chen, Q.Y. Tu, Y.P. Xu, L. Dai and M. Zhao, J. Phys. Chem. B, 108, 12024 (2004); doi:10.1021/jp048420o.