Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural, Biological and Photocatalytic Properties of Zirconium Oxide Nanoparticles Synthesized by Microwave Assisted Solution Method
Corresponding Author(s) : E. Kumar
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
Zirconium dioxide nanoparticles have been synthesized by microwave assisted solution method. The prepared nanoparticle have been characterized by powder X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy, ultraviolet- diffuse reflectance spectra, thermo gravimetric-differential thermal analysis and also evaluated for their antibacterial activity against bacterial strains. XRD pattern showed the prepared ZrO2 nanoparticles having monoclinic structure which shows the average crystalline size around 20 nm. SEM image showed the particles are spherical shape with agglomeration due to the intermolecular attraction for small particle size. From the UV-DRS, the energy band gap has found to be 4.9 eV. The results of antibacterial activity showed that the nanocrystalline zirconium dioxide had an important inhibitory activity against Pseudomonas arginosa. Photocatalytic degradation of methylene blue dye in the presence of ZrO2 nanoparticle under sunlight has been investigated at various times. The 75 % of methylene blue dye has been degraded at 140 min of sunlight irradiation. The photocatalytic activity of catalyst has been high for 40 mg/50 mL sample concentration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Piconi and G. Maccauro, Biomaterials, 20, 1 (1999); https://doi.org/10.1016/S0142-9612(98)00010-6.
- F. Heshmatpour and R.B. Aghakhanpour, Powder Technol., 205, 193 (2011); https://doi.org/10.1016/j.powtec.2010.09.011.
- C. Oetzel and R. Clasen, J. Mater. Sci., 41, 8130 (2006); https://doi.org/10.1007/s10853-006-0621-7.
- E.S. Elshazly, S.M. Elhout and E.S. Ali, J. Mater. Sci. Technol., 27, 332 (2011); https://doi.org/10.1016/S1005-0302(11)60070-4.
- J. Luo, R. Ball and R. Stevens, J. Mater. Sci., 39, 235 (2004); https://doi.org/10.1023/B:JMSC.0000007749.72739.bb.
- E. Krumov, J. Dikova, K. Starbova, D. Popov, V. Blaskov, K. Kolev and L.D. Laude, J. Mater. Sci. Mater. Electron., 14, 759 (2003); https://doi.org/10.1023/A:1026176431171.
- M. Premanathan, K. Karthikeyan, K. Jeyasubramanian and G. Manivannan, Nanomedicine, 7, 184 (2011); https://doi.org/10.1016/j.nano.2010.10.001.
- M.-C. Wang, W.-L. Li, C.-W. Cheng, K.-M. Chang, Y.-F. Chen and C.-S. Hsie, Mater. Chem. Phys., 123, 203 (2010); https://doi.org/10.1016/j.matchemphys.2010.03.083.
- C.J. Dalmaschio, V.R. Mastelaro, P. Nascente, J. Bettini, J.L. Zotin, E. Longo and E.R. Leite, J. Colloid Interface Sci., 343, 256 (2010); https://doi.org/10.1016/j.jcis.2009.11.027.
- E.A. Trusova, A.A. Khrushcheva and K.V. Vokhmintcev, J. Eur. Ceram. Soc., 32, 1977 (2012); https://doi.org/10.1016/j.jeurceramsoc.2011.11.006.
- B. Tyagi, K. Sidhpuria, B. Shaik and R.V. Jasra, Ind. Eng. Chem. Res., 45, 8643 (2006); https://doi.org/10.1021/ie060519p.
- S.C. Vella Durai, L. Guru Prasad, E. Kumar, D. Muthuraj and V.B. Jothy, Int. J. Res. Advent Technol., 6, 1531 (2018).
- S. Shukla and S. Seal, Rev. Adv. Mater. Sci., 5, 117 (2003).
- M.R.H. Siddiqui, A.I. Al-Wassil, A.M. Al-Otaibi and R.M. Mahfouz, Mater. Res., 15, 986 (2012); https://doi.org/10.1590/S1516-14392012005000128.
- A.S. Keiteb, E. Saion, A. Zakaria and N. Soltani, J. Nanomater., 2016, 1913609 (2016); https://doi.org/10.1155/2016/1913609.
- E. Kumar, P. Selvarajan and D. Muthuraj, Mater. Res., 16, 269 (2013); https://doi.org/10.1590/S1516-14392013005000021.
- H.R. Sahu and G.R. Rao, Bull. Mater. Sci., 23, 349 (2000); https://doi.org/10.1007/BF02708383.
- T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao and N. Serpone, Photochem. Photobiol. A, 140, 163 (2001); https://doi.org/10.1016/S1010-6030(01)00398-7.
- V. Priyanka and V.C. Srivastava, Ind. Eng. Chem. Res., 52, 17790 (2013); https://doi.org/10.1021/ie401973r.
References
C. Piconi and G. Maccauro, Biomaterials, 20, 1 (1999); https://doi.org/10.1016/S0142-9612(98)00010-6.
F. Heshmatpour and R.B. Aghakhanpour, Powder Technol., 205, 193 (2011); https://doi.org/10.1016/j.powtec.2010.09.011.
C. Oetzel and R. Clasen, J. Mater. Sci., 41, 8130 (2006); https://doi.org/10.1007/s10853-006-0621-7.
E.S. Elshazly, S.M. Elhout and E.S. Ali, J. Mater. Sci. Technol., 27, 332 (2011); https://doi.org/10.1016/S1005-0302(11)60070-4.
J. Luo, R. Ball and R. Stevens, J. Mater. Sci., 39, 235 (2004); https://doi.org/10.1023/B:JMSC.0000007749.72739.bb.
E. Krumov, J. Dikova, K. Starbova, D. Popov, V. Blaskov, K. Kolev and L.D. Laude, J. Mater. Sci. Mater. Electron., 14, 759 (2003); https://doi.org/10.1023/A:1026176431171.
M. Premanathan, K. Karthikeyan, K. Jeyasubramanian and G. Manivannan, Nanomedicine, 7, 184 (2011); https://doi.org/10.1016/j.nano.2010.10.001.
M.-C. Wang, W.-L. Li, C.-W. Cheng, K.-M. Chang, Y.-F. Chen and C.-S. Hsie, Mater. Chem. Phys., 123, 203 (2010); https://doi.org/10.1016/j.matchemphys.2010.03.083.
C.J. Dalmaschio, V.R. Mastelaro, P. Nascente, J. Bettini, J.L. Zotin, E. Longo and E.R. Leite, J. Colloid Interface Sci., 343, 256 (2010); https://doi.org/10.1016/j.jcis.2009.11.027.
E.A. Trusova, A.A. Khrushcheva and K.V. Vokhmintcev, J. Eur. Ceram. Soc., 32, 1977 (2012); https://doi.org/10.1016/j.jeurceramsoc.2011.11.006.
B. Tyagi, K. Sidhpuria, B. Shaik and R.V. Jasra, Ind. Eng. Chem. Res., 45, 8643 (2006); https://doi.org/10.1021/ie060519p.
S.C. Vella Durai, L. Guru Prasad, E. Kumar, D. Muthuraj and V.B. Jothy, Int. J. Res. Advent Technol., 6, 1531 (2018).
S. Shukla and S. Seal, Rev. Adv. Mater. Sci., 5, 117 (2003).
M.R.H. Siddiqui, A.I. Al-Wassil, A.M. Al-Otaibi and R.M. Mahfouz, Mater. Res., 15, 986 (2012); https://doi.org/10.1590/S1516-14392012005000128.
A.S. Keiteb, E. Saion, A. Zakaria and N. Soltani, J. Nanomater., 2016, 1913609 (2016); https://doi.org/10.1155/2016/1913609.
E. Kumar, P. Selvarajan and D. Muthuraj, Mater. Res., 16, 269 (2013); https://doi.org/10.1590/S1516-14392013005000021.
H.R. Sahu and G.R. Rao, Bull. Mater. Sci., 23, 349 (2000); https://doi.org/10.1007/BF02708383.
T. Zhang, T. Oyama, A. Aoshima, H. Hidaka, J. Zhao and N. Serpone, Photochem. Photobiol. A, 140, 163 (2001); https://doi.org/10.1016/S1010-6030(01)00398-7.
V. Priyanka and V.C. Srivastava, Ind. Eng. Chem. Res., 52, 17790 (2013); https://doi.org/10.1021/ie401973r.