Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Synthesis of Hierarchical Graphene-MnO2 Nanowire Composites with Enhanced Specific Capacitance
Corresponding Author(s) : A.M. Shanmugharaj
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
Hierarchical nanostructured graphene–manganese dioxide nanowire (G-MnO2-NW) composites have been prepared by hydrothermal synthesis route using water/1-decanol as the medium. Synthesized materials were analyzed using various characterization tools to corroborate their chemical compositions, structure/morphology and surface area. Electrochemical measurements of the synthesized G-MnO2-NW electrode materials delivered the highest specific capacity (255 Fg-1), high rate capability and improved cycling stability at 0.5 Ag–1 in 1M sodium sulfate solution and this fact may be attributed to its high surface area and porosity. Moreover, synthesized G-MnO2-NW electrodes displayed better energy and power density, when compared to the MnO2-NW based electrodes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.R. Srither, A. Karthik, S. Arunmetha, D. Murugesan and V. Rajendran, Mater. Chem. Phys., 183, 375 (2016); https://doi.org/10.1016/j.matchemphys.2016.08.041.
- K. Jost, D. Stenger, C.R. Perez, J.K. McDonough, K. Lian, Y. Gogotsi and G. Dion, Energy Environ. Sci., 6, 2698 (2013); https://doi.org/10.1039/c3ee40515j.
- Z. Weng, Y. Su, D.W. Wang, F. Li, J. Du and H.M. Cheng, Adv. Energy Mater., 1, 917 (2011); https://doi.org/10.1002/aenm.201100312.
- D.S. Su and R. Schlogl, ChemSusChem, 3, 136 (2010); https://doi.org/10.1002/cssc.200900182.
- J. Bae, J.Y. Park, O.S. Kwon and C.-S. Lee, J. Ind. Eng. Chem., 51, 1 (2017); https://doi.org/10.1016/j.jiec.2017.02.023.
- L.L. Zhang and X.S. Zhao, Chem. Soc. Rev., 38, 2520 (2009); https://doi.org/10.1039/b813846j.
- R. Rajagopal and K.-S. Ryu, J. Ind. Eng. Chem., 60, 441 (2018); https://doi.org/10.1016/j.jiec.2017.11.031.
- J.R. Miller and P. Simon, Science, 321, 651 (2008); https://doi.org/10.1126/science.1158736.
- X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, L. Gong, W.C. Yen, W. Mai, J. Chen, K. Huo, Y.L. Chueh, Z.L. Wang and J. Zhou, ACS Nano, 6, 9200 (2012); https://doi.org/10.1021/nn303530k.
- X. Zhang, X. Sun, H. Zhang, D. Zhang and Y. Ma, Mater. Chem. Phys., 137, 290 (2012); https://doi.org/10.1016/j.matchemphys.2012.09.023.
- C. Liu, F. Li, L.P. Ma and H.M. Cheng, Adv. Mater., 22, E28 (2010); https://doi.org/10.1002/adma.200903328.
- Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes and S. Dai, Adv. Mater., 23, 4828 (2011); https://doi.org/10.1002/adma.201100984.
- Y. Liu, D. He, J. Duan, Y. Wang and S. Li, Mater. Chem. Phys., 147, 141 (2014); https://doi.org/10.1016/j.matchemphys.2014.04.020.
- I.I. Gurten Inal, S.M. Holmes, E. Yagmur, N. Ermumcu, A. Banford and Z. Aktas, J. Ind. Eng. Chem., 61, 124 (2018); https://doi.org/10.1016/j.jiec.2017.12.009.
- Z.S. Wu, K. Parvez, X. Feng and K. Müllen, Nat. Commun., 4, 2487 (2013); https://doi.org/10.1038/ncomms3487.
- A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon and W. Van Schalkwijk, Nat. Mater., 4, 366 (2005); https://doi.org/10.1038/nmat1368.
- X.Y. Lang, A. Hirata, T. Fujita and M.W. Chen, Nat. Nanotechnol., 6, 232 (2011); https://doi.org/10.1038/nnano.2011.13.
- J.R. Miller, R.A. Outlaw and B.C. Holloway, Science, 329, 1637 (2010); https://doi.org/10.1126/science.1194372.
- J.L. Xia, F. Chen, J.H. Li and N.J. Tao, Nat. Nanotechnol., 4, 505 (2009); https://doi.org/10.1038/nnano.2009.177.
- M.F. El-Kady, V. Strong, S. Dubin and R.B. Kaner, Science, 335, 1326 (2012); https://doi.org/10.1126/science.1216744.
- H. Jeon, J.H. Han, D.M. Yu, J.Y. Lee, T.-H. Kim and Y.T. Hong, J. Ind. Eng. Chem., 45, 105 (2017); https://doi.org/10.1016/j.jiec.2016.09.011.
- Z. Aruna and B.Z. Jang, Process for Producing Nano-Scaled Graphene Platelet Nanocomposite Electrodes for Supercapacitors, U.S. Patent 11/906,786 (2007).
- C. Liu, Z. Yu, D. Neff, A. Zhamu and B.Z. Jang, Nano Lett., 10, 4863 (2010); https://doi.org/10.1021/nl102661q.
- T. Zhai, S. Xie, M. Yu, P. Fang, C. Liang, X. Lu and Y. Tong, Nano Energy, 8, 255 (2014); https://doi.org/10.1016/j.nanoen.2014.06.013.
- M. Yu, W. Wang, C. Li, T. Zhai, X. Lu and Y. Tong, NPG Asia Mater., 6, e129 (2014); https://doi.org/10.1038/am.2014.78.
- G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui and Z. Bao, Nano Lett., 11, 2905 (2011); https://doi.org/10.1021/nl2013828.
- S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang, ACS Nano, 4, 2822 (2010); https://doi.org/10.1021/nn901311t.
- L. Khandare and S. Terdale, Appl. Surf. Sci., 418, 22 (2017); https://doi.org/10.1016/j.apsusc.2016.12.036.
- E.R. Ezeigwe, M.T.T. Tan, P.S. Khiew and C.W. Siong, Ceram. Int., 41, 11418 (2015); https://doi.org/10.1016/j.ceramint.2015.05.105.
- D. Hou, H. Tao, X. Zhu and M. Li, Appl. Surf. Sci., 419, 580 (2017); https://doi.org/10.1016/j.apsusc.2017.05.080.
- Z.J. Han, S. Pineda, A.T. Murdock, D.H. Seo, K. Ostrikov and A. Bendavid, J. Mater. Chem. A Mater. Energy Sustain., 5, 17293 (2017); https://doi.org/10.1039/C7TA03355A.
- W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan and C.S. Ozkan, Sci. Rep., 4, 4452 (2015); https://doi.org/10.1038/srep04452.
- V.H. Pham, T.-D. Nguyen-Phan, X. Tong, B. Rajagopalan, J.S. Chung and J.H. Dickerson, Carbon, 126, 135 (2018); https://doi.org/10.1016/j.carbon.2017.10.026.
- L. Jiang, Z. Ren, S. Chen, Q. Zhang, X. Lu, H. Zhang and G. Wan, Sci. Rep., 8, 4412 (2018); https://doi.org/10.1038/s41598-018-22742-7.
- X. Zhou, X. Shen, Z. Xia, Z. Zhang, J. Li, Y. Ma and Y. Qu, ACS Appl. Mater. Interfaces, 7, 20322 (2015); https://doi.org/10.1021/acsami.5b05989.
- S.A. Pawar, D.S. Patil and J.C. Shin, J. Ind. Eng. Chem., 54, 162 (2017); https://doi.org/10.1016/j.jiec.2017.05.030.
- Y. Zhou, L. Ma, M. Gan, M. Ye, X. Li, Y. Zhai, F. Yan and F. Cao, Appl. Surf. Sci., 444, 1 (2018); https://doi.org/10.1016/j.apsusc.2018.03.049.
- S. Sahoo and J.-J. Shim, J. Ind. Eng. Chem., 54, 205 (2017); https://doi.org/10.1016/j.jiec.2017.05.035.
- B.S. Singu and K.R. Yoon, J. Ind. Eng. Chem., 33, 374 (2016); https://doi.org/10.1016/j.jiec.2015.10.036.
- J.A. Rajesh, J.-H. Park, V.H. Vinh Quy, J.M. Kwon, J. Chae, S.-H. Kang, H. Kim and K.-S. Ahn, J. Ind. Eng. Chem., 63, 73 (2018); https://doi.org/10.1016/j.jiec.2018.02.001.
- B. Zheng, T. Huang, L. Kou, X. Zhao, K. Gopalsamy and C. Gao, J. Mater. Chem. A Mater. Energy Sustain., 2, 9736 (2014); https://doi.org/10.1039/C4TA01868K.
- Q. Chen, Y. Meng, C. Hu, Y. Zhao, H. Shao, N. Chen and L. Qu, J. Power Sources, 247, 32 (2014); https://doi.org/10.1016/j.jpowsour.2013.08.045.
- T.M. Higgins, D. McAteer, J.C.M. Coelho, B.M. Sanchez, Z. Gholamvand, G. Moriarty, N. McEvoy, N.C. Berner, G.S. Duesberg, V. Nicolosi and J.N. Coleman, ACS Nano, 8, 9567 (2014); https://doi.org/10.1021/nn5038543.
- D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, A. Slesarev, Z. Sun, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368.
- A.M. Shanmugharaj, J.H. Yoon, W.J. Yang and S.H. Ryu, J. Colloid Interface Sci., 401, 148 (2013); https://doi.org/10.1016/j.jcis.2013.02.054.
- S.H. Ryu and A.M. Shanmugharaj, Chem. Eng. J., 244, 552 (2014); https://doi.org/10.1016/j.cej.2014.01.101.
- M.J. Kumar Reddy, S.H. Ryu and A.M. Shanmugharaj, Nanoscale, 8, 471 (2016); https://doi.org/10.1039/C5NR06680H.
- T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis and I. Dekany, Chem. Mater., 18, 2740 (2006); https://doi.org/10.1021/cm060258+.
- X. Liu, X. Zhong, Z. Yang, F. Pan, L. Gu and Y. Yu, Electrochim. Acta, 152, 178 (2015); https://doi.org/10.1016/j.electacta.2014.11.100.
- C. Xu, J. Sun and L. Gao, J. Mater. Chem., 22, 975 (2012); https://doi.org/10.1039/C1JM14099J.
- Y.G. Li, B. Tan and Y.Y. Wu, Nano Lett., 8, 265 (2008); https://doi.org/10.1021/nl0725906.
- X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun and X. Zhang, Appl. Energy, 153, 94 (2015); https://doi.org/10.1016/j.apenergy.2014.07.094.
- M. Toupin, T. Brousse and D. Bélanger, Chem. Mater., 14, 3946 (2002); https://doi.org/10.1021/cm020408q.
- K. Dai, L. Lu, C. Liang, J. Dai, Q. Liu, Y. Zhang, G. Zhu and Z. Liu, Electrochim. Acta, 116, 111 (2014); https://doi.org/10.1016/j.electacta.2013.11.036.
- X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, L. Zhang and J. Zhang, Appl. Energy, 134, 439 (2014); https://doi.org/10.1016/j.apenergy.2014.08.050.
- B. Yin, S. Zhang, Y. Jiao, Y. Liu, F. Qu and X. Wu, CrystEngComm, 16, 9999 (2014); https://doi.org/10.1039/C4CE01302F.
- W. Li, X. Cui, R. Zeng, G. Du, Z. Sun, R. Zheng, S.P. Ringer and S.X. Dou, Sci. Rep., 5, 8987 (2015); https://doi.org/10.1038/srep08987.
- S. Maiti, A. Pramanik and S. Mahanty, ACS Appl. Mater. Interfaces, 6, 10754 (2014); https://doi.org/10.1021/am502638d.
- B.G. Choi, Y.S. Huh, W.H. Hong, H.J. Kim and H.S. Park, Nanoscale, 4, 5394 (2012); https://doi.org/10.1039/c2nr31215h.
- V. Aravindan, W. Chuiling, M.V. Reddy, G.S. Rao, B.V. Chowdari and S. Madhavi, Phys. Chem. Chem. Phys., 14, 5808 (2012); https://doi.org/10.1039/c2cp40603a.
- B. Anothumakkool, A. Torris A. T, S.N. Bhange, M.V. Badiger and S. Kurungot, Nanoscale, 6, 5944 (2014); https://doi.org/10.1039/c4nr00659c.
- Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu and H.M. Cheng, ACS Nano, 4, 5835 (2010); https://doi.org/10.1021/nn101754k.
- J. Tao, N. Liu, W. Ma, L. Ding, L. Li, J. Su and Y. Gao, Sci. Rep., 3, 2286 (2013); https://doi.org/10.1038/srep02286.
- H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu and Y. Huang, Nano Res., 8, 1148 (2015); https://doi.org/10.1007/s12274-014-0595-8.
- Z. Li, Z. Zhou, G. Yun, K. Shi, X. Lv and B. Yang, Nanoscale Res. Lett., 8, 473 (2013); https://doi.org/10.1186/1556-276X-8-473.
- H. Chen, S.X. Zhou, M. Chen and L.M. Wu, J. Mater. Chem., 22, 25207 (2012); https://doi.org/10.1039/c2jm35054h.
- J.T. Zhang, J.W. Jiang and X.S. Zhao, J. Phys. Chem. C, 115, 6448 (2011); https://doi.org/10.1021/jp200724h.
References
S.R. Srither, A. Karthik, S. Arunmetha, D. Murugesan and V. Rajendran, Mater. Chem. Phys., 183, 375 (2016); https://doi.org/10.1016/j.matchemphys.2016.08.041.
K. Jost, D. Stenger, C.R. Perez, J.K. McDonough, K. Lian, Y. Gogotsi and G. Dion, Energy Environ. Sci., 6, 2698 (2013); https://doi.org/10.1039/c3ee40515j.
Z. Weng, Y. Su, D.W. Wang, F. Li, J. Du and H.M. Cheng, Adv. Energy Mater., 1, 917 (2011); https://doi.org/10.1002/aenm.201100312.
D.S. Su and R. Schlogl, ChemSusChem, 3, 136 (2010); https://doi.org/10.1002/cssc.200900182.
J. Bae, J.Y. Park, O.S. Kwon and C.-S. Lee, J. Ind. Eng. Chem., 51, 1 (2017); https://doi.org/10.1016/j.jiec.2017.02.023.
L.L. Zhang and X.S. Zhao, Chem. Soc. Rev., 38, 2520 (2009); https://doi.org/10.1039/b813846j.
R. Rajagopal and K.-S. Ryu, J. Ind. Eng. Chem., 60, 441 (2018); https://doi.org/10.1016/j.jiec.2017.11.031.
J.R. Miller and P. Simon, Science, 321, 651 (2008); https://doi.org/10.1126/science.1158736.
X. Xiao, T. Li, P. Yang, Y. Gao, H. Jin, W. Ni, W. Zhan, X. Zhang, Y. Cao, J. Zhong, L. Gong, W.C. Yen, W. Mai, J. Chen, K. Huo, Y.L. Chueh, Z.L. Wang and J. Zhou, ACS Nano, 6, 9200 (2012); https://doi.org/10.1021/nn303530k.
X. Zhang, X. Sun, H. Zhang, D. Zhang and Y. Ma, Mater. Chem. Phys., 137, 290 (2012); https://doi.org/10.1016/j.matchemphys.2012.09.023.
C. Liu, F. Li, L.P. Ma and H.M. Cheng, Adv. Mater., 22, E28 (2010); https://doi.org/10.1002/adma.200903328.
Y. Zhai, Y. Dou, D. Zhao, P.F. Fulvio, R.T. Mayes and S. Dai, Adv. Mater., 23, 4828 (2011); https://doi.org/10.1002/adma.201100984.
Y. Liu, D. He, J. Duan, Y. Wang and S. Li, Mater. Chem. Phys., 147, 141 (2014); https://doi.org/10.1016/j.matchemphys.2014.04.020.
I.I. Gurten Inal, S.M. Holmes, E. Yagmur, N. Ermumcu, A. Banford and Z. Aktas, J. Ind. Eng. Chem., 61, 124 (2018); https://doi.org/10.1016/j.jiec.2017.12.009.
Z.S. Wu, K. Parvez, X. Feng and K. Müllen, Nat. Commun., 4, 2487 (2013); https://doi.org/10.1038/ncomms3487.
A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon and W. Van Schalkwijk, Nat. Mater., 4, 366 (2005); https://doi.org/10.1038/nmat1368.
X.Y. Lang, A. Hirata, T. Fujita and M.W. Chen, Nat. Nanotechnol., 6, 232 (2011); https://doi.org/10.1038/nnano.2011.13.
J.R. Miller, R.A. Outlaw and B.C. Holloway, Science, 329, 1637 (2010); https://doi.org/10.1126/science.1194372.
J.L. Xia, F. Chen, J.H. Li and N.J. Tao, Nat. Nanotechnol., 4, 505 (2009); https://doi.org/10.1038/nnano.2009.177.
M.F. El-Kady, V. Strong, S. Dubin and R.B. Kaner, Science, 335, 1326 (2012); https://doi.org/10.1126/science.1216744.
H. Jeon, J.H. Han, D.M. Yu, J.Y. Lee, T.-H. Kim and Y.T. Hong, J. Ind. Eng. Chem., 45, 105 (2017); https://doi.org/10.1016/j.jiec.2016.09.011.
Z. Aruna and B.Z. Jang, Process for Producing Nano-Scaled Graphene Platelet Nanocomposite Electrodes for Supercapacitors, U.S. Patent 11/906,786 (2007).
C. Liu, Z. Yu, D. Neff, A. Zhamu and B.Z. Jang, Nano Lett., 10, 4863 (2010); https://doi.org/10.1021/nl102661q.
T. Zhai, S. Xie, M. Yu, P. Fang, C. Liang, X. Lu and Y. Tong, Nano Energy, 8, 255 (2014); https://doi.org/10.1016/j.nanoen.2014.06.013.
M. Yu, W. Wang, C. Li, T. Zhai, X. Lu and Y. Tong, NPG Asia Mater., 6, e129 (2014); https://doi.org/10.1038/am.2014.78.
G. Yu, L. Hu, M. Vosgueritchian, H. Wang, X. Xie, J.R. McDonough, X. Cui, Y. Cui and Z. Bao, Nano Lett., 11, 2905 (2011); https://doi.org/10.1021/nl2013828.
S. Chen, J. Zhu, X. Wu, Q. Han and X. Wang, ACS Nano, 4, 2822 (2010); https://doi.org/10.1021/nn901311t.
L. Khandare and S. Terdale, Appl. Surf. Sci., 418, 22 (2017); https://doi.org/10.1016/j.apsusc.2016.12.036.
E.R. Ezeigwe, M.T.T. Tan, P.S. Khiew and C.W. Siong, Ceram. Int., 41, 11418 (2015); https://doi.org/10.1016/j.ceramint.2015.05.105.
D. Hou, H. Tao, X. Zhu and M. Li, Appl. Surf. Sci., 419, 580 (2017); https://doi.org/10.1016/j.apsusc.2017.05.080.
Z.J. Han, S. Pineda, A.T. Murdock, D.H. Seo, K. Ostrikov and A. Bendavid, J. Mater. Chem. A Mater. Energy Sustain., 5, 17293 (2017); https://doi.org/10.1039/C7TA03355A.
W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan and C.S. Ozkan, Sci. Rep., 4, 4452 (2015); https://doi.org/10.1038/srep04452.
V.H. Pham, T.-D. Nguyen-Phan, X. Tong, B. Rajagopalan, J.S. Chung and J.H. Dickerson, Carbon, 126, 135 (2018); https://doi.org/10.1016/j.carbon.2017.10.026.
L. Jiang, Z. Ren, S. Chen, Q. Zhang, X. Lu, H. Zhang and G. Wan, Sci. Rep., 8, 4412 (2018); https://doi.org/10.1038/s41598-018-22742-7.
X. Zhou, X. Shen, Z. Xia, Z. Zhang, J. Li, Y. Ma and Y. Qu, ACS Appl. Mater. Interfaces, 7, 20322 (2015); https://doi.org/10.1021/acsami.5b05989.
S.A. Pawar, D.S. Patil and J.C. Shin, J. Ind. Eng. Chem., 54, 162 (2017); https://doi.org/10.1016/j.jiec.2017.05.030.
Y. Zhou, L. Ma, M. Gan, M. Ye, X. Li, Y. Zhai, F. Yan and F. Cao, Appl. Surf. Sci., 444, 1 (2018); https://doi.org/10.1016/j.apsusc.2018.03.049.
S. Sahoo and J.-J. Shim, J. Ind. Eng. Chem., 54, 205 (2017); https://doi.org/10.1016/j.jiec.2017.05.035.
B.S. Singu and K.R. Yoon, J. Ind. Eng. Chem., 33, 374 (2016); https://doi.org/10.1016/j.jiec.2015.10.036.
J.A. Rajesh, J.-H. Park, V.H. Vinh Quy, J.M. Kwon, J. Chae, S.-H. Kang, H. Kim and K.-S. Ahn, J. Ind. Eng. Chem., 63, 73 (2018); https://doi.org/10.1016/j.jiec.2018.02.001.
B. Zheng, T. Huang, L. Kou, X. Zhao, K. Gopalsamy and C. Gao, J. Mater. Chem. A Mater. Energy Sustain., 2, 9736 (2014); https://doi.org/10.1039/C4TA01868K.
Q. Chen, Y. Meng, C. Hu, Y. Zhao, H. Shao, N. Chen and L. Qu, J. Power Sources, 247, 32 (2014); https://doi.org/10.1016/j.jpowsour.2013.08.045.
T.M. Higgins, D. McAteer, J.C.M. Coelho, B.M. Sanchez, Z. Gholamvand, G. Moriarty, N. McEvoy, N.C. Berner, G.S. Duesberg, V. Nicolosi and J.N. Coleman, ACS Nano, 8, 9567 (2014); https://doi.org/10.1021/nn5038543.
D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, A. Slesarev, Z. Sun, L.B. Alemany, W. Lu and J.M. Tour, ACS Nano, 4, 4806 (2010); https://doi.org/10.1021/nn1006368.
A.M. Shanmugharaj, J.H. Yoon, W.J. Yang and S.H. Ryu, J. Colloid Interface Sci., 401, 148 (2013); https://doi.org/10.1016/j.jcis.2013.02.054.
S.H. Ryu and A.M. Shanmugharaj, Chem. Eng. J., 244, 552 (2014); https://doi.org/10.1016/j.cej.2014.01.101.
M.J. Kumar Reddy, S.H. Ryu and A.M. Shanmugharaj, Nanoscale, 8, 471 (2016); https://doi.org/10.1039/C5NR06680H.
T. Szabo, O. Berkesi, P. Forgo, K. Josepovits, Y. Sanakis, D. Petridis and I. Dekany, Chem. Mater., 18, 2740 (2006); https://doi.org/10.1021/cm060258+.
X. Liu, X. Zhong, Z. Yang, F. Pan, L. Gu and Y. Yu, Electrochim. Acta, 152, 178 (2015); https://doi.org/10.1016/j.electacta.2014.11.100.
C. Xu, J. Sun and L. Gao, J. Mater. Chem., 22, 975 (2012); https://doi.org/10.1039/C1JM14099J.
Y.G. Li, B. Tan and Y.Y. Wu, Nano Lett., 8, 265 (2008); https://doi.org/10.1021/nl0725906.
X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun and X. Zhang, Appl. Energy, 153, 94 (2015); https://doi.org/10.1016/j.apenergy.2014.07.094.
M. Toupin, T. Brousse and D. Bélanger, Chem. Mater., 14, 3946 (2002); https://doi.org/10.1021/cm020408q.
K. Dai, L. Lu, C. Liang, J. Dai, Q. Liu, Y. Zhang, G. Zhu and Z. Liu, Electrochim. Acta, 116, 111 (2014); https://doi.org/10.1016/j.electacta.2013.11.036.
X. Su, L. Yu, G. Cheng, H. Zhang, M. Sun, L. Zhang and J. Zhang, Appl. Energy, 134, 439 (2014); https://doi.org/10.1016/j.apenergy.2014.08.050.
B. Yin, S. Zhang, Y. Jiao, Y. Liu, F. Qu and X. Wu, CrystEngComm, 16, 9999 (2014); https://doi.org/10.1039/C4CE01302F.
W. Li, X. Cui, R. Zeng, G. Du, Z. Sun, R. Zheng, S.P. Ringer and S.X. Dou, Sci. Rep., 5, 8987 (2015); https://doi.org/10.1038/srep08987.
S. Maiti, A. Pramanik and S. Mahanty, ACS Appl. Mater. Interfaces, 6, 10754 (2014); https://doi.org/10.1021/am502638d.
B.G. Choi, Y.S. Huh, W.H. Hong, H.J. Kim and H.S. Park, Nanoscale, 4, 5394 (2012); https://doi.org/10.1039/c2nr31215h.
V. Aravindan, W. Chuiling, M.V. Reddy, G.S. Rao, B.V. Chowdari and S. Madhavi, Phys. Chem. Chem. Phys., 14, 5808 (2012); https://doi.org/10.1039/c2cp40603a.
B. Anothumakkool, A. Torris A. T, S.N. Bhange, M.V. Badiger and S. Kurungot, Nanoscale, 6, 5944 (2014); https://doi.org/10.1039/c4nr00659c.
Z.S. Wu, W. Ren, D.W. Wang, F. Li, B. Liu and H.M. Cheng, ACS Nano, 4, 5835 (2010); https://doi.org/10.1021/nn101754k.
J. Tao, N. Liu, W. Ma, L. Ding, L. Li, J. Su and Y. Gao, Sci. Rep., 3, 2286 (2013); https://doi.org/10.1038/srep02286.
H. Xu, X. Hu, Y. Sun, H. Yang, X. Liu and Y. Huang, Nano Res., 8, 1148 (2015); https://doi.org/10.1007/s12274-014-0595-8.
Z. Li, Z. Zhou, G. Yun, K. Shi, X. Lv and B. Yang, Nanoscale Res. Lett., 8, 473 (2013); https://doi.org/10.1186/1556-276X-8-473.
H. Chen, S.X. Zhou, M. Chen and L.M. Wu, J. Mater. Chem., 22, 25207 (2012); https://doi.org/10.1039/c2jm35054h.
J.T. Zhang, J.W. Jiang and X.S. Zhao, J. Phys. Chem. C, 115, 6448 (2011); https://doi.org/10.1021/jp200724h.