Copyright (c) 2026 Priya Vimal, V. Gayathri

This work is licensed under a Creative Commons Attribution 4.0 International License.
Polymer Immobilised Mn(II) Complex as Efficient Catalyst for High-Value Fuel Production from Hydrodeoxygenation of Bisphenol A
Corresponding Author(s) : V. Gayathri
Asian Journal of Chemistry,
Vol. 38 No. 2 (2026): Vol 38 Issue 2, 2026
Abstract
A polymer-supported manganese(II) complex, PS-[Mn(L-H)(Cl)2], along with its unsupported analogue [Mn(L-H2)2(Cl)2], was synthesised and systematically characterised using elemental analysis, FT-IR, UV-Vis diffuse reflectance spectroscopy, EDAX, magnetic susceptibility measurements and thermogravimetric analysis. Spectroscopic and magnetic data indicated a tetrahedral geometry for the polymer-supported complex and an octahedral environment for the unsupported analogue, with the ligand coordinating in a bidentate chelating mode. The catalytic performance of both complexes was evaluated in the selective hydrodeoxygenation of substituted phenols, with 4,4'-(propane-2,2-diyl)diphenol (BPA) employed as a model substrate. Reaction parameters such as solvent, temperature, catalyst loading, hydrogen pressure, reaction time and substrate concentration were systematically optimised. The polymer-supported catalyst exhibited superior activity, achieving up to 99% BPA conversion with high selectivity toward propane-2,2-diyldicyclohexane under mild conditions, while the unsupported complex showed lower activity and poor recyclability. The enhanced catalytic performance is attributed to effective metal immobilisation, improved accessibility of active sites and the heterogeneous nature of the supported system. Catalyst reusability studies confirmed stable performance over multiple cycles with negligible manganese leaching, supported by ICP-OES analysis and hot filtration tests. A plausible reaction pathway for BPA hydrodeoxygenation was proposed based on control experiments and product distribution.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Zhou, Y. Zhai, K. Ren, Z. Cheng, X. Shen, T. Zhang, Y. Bai, Y. Jia and J. Hong, Resour. Conserv. Recycl., 67, 65 (2023); https://doi.org/10.1016/j.resconrec.2022.106765
- M. Gohil and G. Joshi, in eds.: T. Altalhi and Inamuddin, Perspective of Polycarbonate Composites and Blends Properties, Applications, and Future Development: A Review, In: Green Sustainable Process for Chemical and Environmental Engineering and Science, Green Composites: Preparation, Properties and Allied Applications, Elsevier, Chap. 18, pp. 393-424 (2022); https://doi.org/10.1016/B978-0-323-99643-3.00012-7
- S.H. Nam, Y.M. Seo and M.G. Kim, Chemosphere, 79, 949 (2010); https://doi.org/10.1016/j.chemosphere.2010.02.049
- A.W. Franz, S. Buchholz, R.W. Albach and R. Schmid, Green Carbon, 2, 33 (2024); https://doi.org/10.1016/j.greenca.2024.02.002
- A.B. Adam, M.Y. Abubakar and D. Filibus, Chem. Res. Technol., 2, 140 (2025); https://doi.org/10.22034/chemrestec.2025.533719.1053
- D. Inghels, W. Dullaert and J. Bloemh, Resour. Conserv. Recycl., 110, 61 (2016); https://doi.org/10.1016/j.resconrec.2016.03.013
- J.M. Payne, M. Kamran, M.G. Davidson and M.D. Jones, ChemSusChem, 15, e202200255 (2022); https://doi.org/10.1002/cssc.202200255
- D. Huisingh, Z. Zhang, J. C. Moore, Q. Qiao and Q. Li, J. Clean. Prod., 103, 1 (2015); https://doi.org/10.1016/j.jclepro.2015.04.098
- E. Terrenoire, D. A. Hauglustaine, T. Gasser and O. Penanhoat, Environ. Res. Lett., 14, 084019 (2019); https://doi.org/10.1088/1748-9326/ab3086
- M.D. Staples, R. Malina, P. Suresh, J.I. Hileman and S.R. Barrett, Energy Policy, 114, 342 (2018); https://doi.org/10.1016/j.enpol.2017.12.007
- H. Ang, Y. Hu, G. Li, A. Wang, G. Xu, C. Yu, X. Wang, T. Zhang and N. Li, Green Chem., 21, 3789 (2019); https://doi.org/10.1039/C9GC01627A
- L. Wang, G. Li, Y. Cong, A. Wang, X. Wang, T. Zhang and N. Li, Green Chem., 23, 3693 (2021); https://doi.org/10.1039/D1GC00353D
- J. Wang, Y. Zhang, X. Guo, J. Tang, Z. Chen, M. N. Ha, P. Cui and Q. Ke, Green Chem., 26, 2365 (2024); https://doi.org/10.1039/D3GC04117D
- S. Alexander, V. Udayakumar and V. Gayathri, J. Mol. Catal. A: Chem., 314, 21 (2009); https://doi.org/10.1016/j.molcata.2009.08.012
- M. K. Renuka and V. Gayathri, J. Organomet. Chem., 874, 26 (2018); https://doi.org/10.1016/j.jorganchem.2018.08.012
- V. Gayathri and E. R. Shilpa, Indian J. Chem. Technol., 28, 506 (2022); https://doi.org/10.56042/ijct.v28i5.67626
- M. K. Renuka and V. Gayathri, Catal. Commun., 104, 71 (2018); https://doi.org/10.1016/j.catcom.2017.10.023
- Y. Upadhyay, A. K. Srivastava and R. K. Joshi, Polymer Supported Organic Catalysts, CRC Press, edn. 1, pp 193-214 (2024); https://doi.org/10.1201/9781003039785-13
- S. Dutta, ChemSusChem, 13, 2894 (2020); https://doi.org/10.1002/cssc.202000247
- J. Li, W. Zeng, L. Wang, G. Shi and D. Wang, Chem. Eng. J., 474, 145642 (2023); https://doi.org/10.1016/j.cej.2023.145642
- K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley (2009).
- A.B.P. Lever and S.A. Rice, Inorganic Electronic Spectroscopy, Elsevier (1969).
- S. Chandra and L. K. Gupta, Spectrochim. Acta A, 62, 307 (2005); https://doi.org/10.1016/j.saa.2004.12.044
- V. Udayakumar, A. Stanislaus, G. Virupaiah and V. Balasubramanian, Chin. J. Catal., 32, 280 (2011); https://doi.org/10.1016/S1872-2067(10)60176-3
- J. He, C. Zhao and J.A. Lercher, J. Catal., 309, 362 (2014); https://doi.org/10.1016/j.jcat.2013.09.009
- J. Hao, Y. Zhang, H. Na, N. Li, Y. Ban, H. Zhou and Q. Liu, Fuel Process. Technol., 273, 108223 (2025); https://doi.org/10.1016/j.fuproc.2025.108223
- J.E. Peters, J.R. Carpenter and D.C. Dayton, Energy Fuels, 29, 909 (2015); https://doi.org/10.1021/ef502551p
- H. Wang, W. Zhao, M. U. Rehman, W. Liu, Y. Xu, H. Huang, S. Wang, Y. Zhao, D. Mei and X. Ma, ACS Catal., 12, 4724 (2022); https://doi.org/10.1021/acscatal.2c00380
- X. Xu, Y. Li, Y. Gong, P. Zhang, H. Li and Y. Wang, J. Am. Chem. Soc., 134, 16987 (2012); https://doi.org/10.1021/ja308139s
References
X. Zhou, Y. Zhai, K. Ren, Z. Cheng, X. Shen, T. Zhang, Y. Bai, Y. Jia and J. Hong, Resour. Conserv. Recycl., 67, 65 (2023); https://doi.org/10.1016/j.resconrec.2022.106765
M. Gohil and G. Joshi, in eds.: T. Altalhi and Inamuddin, Perspective of Polycarbonate Composites and Blends Properties, Applications, and Future Development: A Review, In: Green Sustainable Process for Chemical and Environmental Engineering and Science, Green Composites: Preparation, Properties and Allied Applications, Elsevier, Chap. 18, pp. 393-424 (2022); https://doi.org/10.1016/B978-0-323-99643-3.00012-7
S.H. Nam, Y.M. Seo and M.G. Kim, Chemosphere, 79, 949 (2010); https://doi.org/10.1016/j.chemosphere.2010.02.049
A.W. Franz, S. Buchholz, R.W. Albach and R. Schmid, Green Carbon, 2, 33 (2024); https://doi.org/10.1016/j.greenca.2024.02.002
A.B. Adam, M.Y. Abubakar and D. Filibus, Chem. Res. Technol., 2, 140 (2025); https://doi.org/10.22034/chemrestec.2025.533719.1053
D. Inghels, W. Dullaert and J. Bloemh, Resour. Conserv. Recycl., 110, 61 (2016); https://doi.org/10.1016/j.resconrec.2016.03.013
J.M. Payne, M. Kamran, M.G. Davidson and M.D. Jones, ChemSusChem, 15, e202200255 (2022); https://doi.org/10.1002/cssc.202200255
D. Huisingh, Z. Zhang, J. C. Moore, Q. Qiao and Q. Li, J. Clean. Prod., 103, 1 (2015); https://doi.org/10.1016/j.jclepro.2015.04.098
E. Terrenoire, D. A. Hauglustaine, T. Gasser and O. Penanhoat, Environ. Res. Lett., 14, 084019 (2019); https://doi.org/10.1088/1748-9326/ab3086
M.D. Staples, R. Malina, P. Suresh, J.I. Hileman and S.R. Barrett, Energy Policy, 114, 342 (2018); https://doi.org/10.1016/j.enpol.2017.12.007
H. Ang, Y. Hu, G. Li, A. Wang, G. Xu, C. Yu, X. Wang, T. Zhang and N. Li, Green Chem., 21, 3789 (2019); https://doi.org/10.1039/C9GC01627A
L. Wang, G. Li, Y. Cong, A. Wang, X. Wang, T. Zhang and N. Li, Green Chem., 23, 3693 (2021); https://doi.org/10.1039/D1GC00353D
J. Wang, Y. Zhang, X. Guo, J. Tang, Z. Chen, M. N. Ha, P. Cui and Q. Ke, Green Chem., 26, 2365 (2024); https://doi.org/10.1039/D3GC04117D
S. Alexander, V. Udayakumar and V. Gayathri, J. Mol. Catal. A: Chem., 314, 21 (2009); https://doi.org/10.1016/j.molcata.2009.08.012
M. K. Renuka and V. Gayathri, J. Organomet. Chem., 874, 26 (2018); https://doi.org/10.1016/j.jorganchem.2018.08.012
V. Gayathri and E. R. Shilpa, Indian J. Chem. Technol., 28, 506 (2022); https://doi.org/10.56042/ijct.v28i5.67626
M. K. Renuka and V. Gayathri, Catal. Commun., 104, 71 (2018); https://doi.org/10.1016/j.catcom.2017.10.023
Y. Upadhyay, A. K. Srivastava and R. K. Joshi, Polymer Supported Organic Catalysts, CRC Press, edn. 1, pp 193-214 (2024); https://doi.org/10.1201/9781003039785-13
S. Dutta, ChemSusChem, 13, 2894 (2020); https://doi.org/10.1002/cssc.202000247
J. Li, W. Zeng, L. Wang, G. Shi and D. Wang, Chem. Eng. J., 474, 145642 (2023); https://doi.org/10.1016/j.cej.2023.145642
K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley (2009).
A.B.P. Lever and S.A. Rice, Inorganic Electronic Spectroscopy, Elsevier (1969).
S. Chandra and L. K. Gupta, Spectrochim. Acta A, 62, 307 (2005); https://doi.org/10.1016/j.saa.2004.12.044
V. Udayakumar, A. Stanislaus, G. Virupaiah and V. Balasubramanian, Chin. J. Catal., 32, 280 (2011); https://doi.org/10.1016/S1872-2067(10)60176-3
J. He, C. Zhao and J.A. Lercher, J. Catal., 309, 362 (2014); https://doi.org/10.1016/j.jcat.2013.09.009
J. Hao, Y. Zhang, H. Na, N. Li, Y. Ban, H. Zhou and Q. Liu, Fuel Process. Technol., 273, 108223 (2025); https://doi.org/10.1016/j.fuproc.2025.108223
J.E. Peters, J.R. Carpenter and D.C. Dayton, Energy Fuels, 29, 909 (2015); https://doi.org/10.1021/ef502551p
H. Wang, W. Zhao, M. U. Rehman, W. Liu, Y. Xu, H. Huang, S. Wang, Y. Zhao, D. Mei and X. Ma, ACS Catal., 12, 4724 (2022); https://doi.org/10.1021/acscatal.2c00380
X. Xu, Y. Li, Y. Gong, P. Zhang, H. Li and Y. Wang, J. Am. Chem. Soc., 134, 16987 (2012); https://doi.org/10.1021/ja308139s