Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Kinetic and Thermodynamic Studies of Microwave-Assisted Transesterification of Papaya Oil
Corresponding Author(s) : Milap G. Nayak
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
Microwave-assisted transesterification due to drastic reduction in reaction time when compared with conventional method gain the research attention. Pesent study explores the kinetic and thermodynamic study of microwave-assisted transesterification of non-edible papaya oil. The experiments were performed using pre-optimized process parameters having 9:1 molar ratio of methanol to oil, 1 wt. % NaOH catalyst. The experiments carried out in commercial microwave reactor with infrared temperature controller. Kinetic study of microwave-assisted palm oil methyl ester (POME) conversion was carried out by varying temperature from 50 to 65 ºC with an increment of 5 ºC. Kinetic study revealed that microwave-assisted homogeneous alkali-catalyzed transesterification follows first order having lower activation energy 27.86 KJ mol-1. Also, higher frequency factor 14764 min-1 and rate constant 0.6703 min-1 at 60 ºC revealed the non-thermal and thermal effect of the microwave. Other thermodynamic properties such as ΔG, ΔH and ΔS were found out to be 94.48 KJ/mol, 24.87 KJ/mol and -0.209 KJ/mol K, respectively, which show that reaction is non-spontaneous, endothermic and endergonic in nature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.H. Ali, M. Mashud, M.R. Rubel and R.H. Ahmad, Procedia Eng., 56, 625 (2013); https://doi.org/10.1016/j.proeng.2013.03.169.
- Y.C. Sharma and B. Singh, Fuel, 87, 1740 (2008); https://doi.org/10.1016/j.fuel.2007.08.001.
- A.K. Tiwari, A. Kumar and H. Raheman, Biomass Bioenergy, 31, 569 (2007); https://doi.org/10.1016/j.biombioe.2007.03.003.
- FAOSTAT, FAOSTAT, http://www.fao.org/faostat/en/#data/QC; (accessed July 15, 2017).
- C. Reddy, All About Papaya in India (2017); http://theindianvegan.blogspot.com/ 2013/03/all-about-papaya-inindia.html. (accessed July 15, 2017).
- W.-J. Lee, M.-H. Lee and N.-W. Su, J. Sci. Food Agric., 91, 2348 (2011); https://doi.org/10.1002/jsfa.4466.
- F.O.A. Tolulope and A. Adewole, J. Fuels, 2014, 904076 (2014); https://doi.org/10.1155/2014/904076.
- Y.-C. Lin, S.-C. Chen, C.-E. Chen, P.-M. Yang and S.-R. Jhang, Fuel, 135, 435 (2014); https://doi.org/10.1016/j.fuel.2014.07.023.
- P.D. Patil, V.G. Gude, A. Mannarswamy, P. Cooke, S. Munson-McGee, N. Nirmalakhandan, P. Lammers and S. Deng, Bioresour. Technol., 102, 1399 (2011); https://doi.org/10.1016/j.biortech.2010.09.046.
- A. Mazubert, C. Taylor, J. Aubin and M. Poux, Bioresour. Technol., 161, 270 (2014); https://doi.org/10.1016/j.biortech.2014.03.011.
- The 3-27 Conversion Test | Quality Testing; http://www.make-biodiesel.org/Quality-Testing/the-3-27-conversiontest.html. (accessed July 15, 2018).
- W. Ye, Y. Gao, H. Ding, M. Liu, S. Liu, X. Han and J. Qi, Fuel, 180, 574 (2016); https://doi.org/10.1016/j.fuel.2016.04.084.
- O. Levenspiel, Chemical Reaction Engineering, Wiley: New York, edn 3 (1999).
- M. Barekati-Goudarzi, P.D. Muley, A. Clarens, D.B. Nde and D. Boldor, Biomass Bioenergy, 107, 353 (2017); https://doi.org/10.1016/j.biombioe.2017.09.006.
- D.A. Lewis, J.D. Summers, T.C. Ward and J.E. McGrath, J. Polym. Sci. Part A Polym. Chem., 30, 1647 (1992); https://doi.org/10.1002/pola.1992.080300817.
- L.M. Surhone, M.T. Timpledon and S.F. Marseken, Eyring Equation, Betascript Publishing (2010).
- L. Wu, T. Wei, Z. Lin, Y. Zou, Z. Tong and J. Sun, Fuel, 182, 920 (2016); https://doi.org/10.1016/j.fuel.2016.05.065.
- P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Fuel, 135, 228 (2014); https://doi.org/10.1016/j.fuel.2014.06.063.
- L.K. Ong, A. Kurniawan, A.C. Suwandi, C.X. Lin, X.S. Zhao and S. Ismadji, J. Supercrit. Fluids, 75, 11 (2013); https://doi.org/10.1016/j.supflu.2012.12.018.
- A.R. Gupta and V.K. Rathod, Renew. Energy, 121, 757 (2018); https://doi.org/10.1016/j.renene.2017.11.027.
- G. Moradi, Y. Davoodbeygi, M. Mohadesi and S. Hosseini, Can. J. Chem. Eng., 93, 819 (2015); https://doi.org/10.1002/cjce.22158.
- M. Feyzi, N. Hosseini, N. Yaghobi and R. Ezzati, Chem. Phys. Lett., 677, 19 (2017); https://doi.org/10.1016/j.cplett.2017.03.014.
- A.N. Sarve, M.N. Varma and S.S. Sonawane, Ultrason. Sonochem., 29, 288 (2016); https://doi.org/10.1016/j.ultsonch.2015.09.016.
- D. Zeng, L. Yang and T. Fang, Fuel, 203, 739 (2017); https://doi.org/10.1016/j.fuel.2017.05.019.
References
M.H. Ali, M. Mashud, M.R. Rubel and R.H. Ahmad, Procedia Eng., 56, 625 (2013); https://doi.org/10.1016/j.proeng.2013.03.169.
Y.C. Sharma and B. Singh, Fuel, 87, 1740 (2008); https://doi.org/10.1016/j.fuel.2007.08.001.
A.K. Tiwari, A. Kumar and H. Raheman, Biomass Bioenergy, 31, 569 (2007); https://doi.org/10.1016/j.biombioe.2007.03.003.
FAOSTAT, FAOSTAT, http://www.fao.org/faostat/en/#data/QC; (accessed July 15, 2017).
C. Reddy, All About Papaya in India (2017); http://theindianvegan.blogspot.com/ 2013/03/all-about-papaya-inindia.html. (accessed July 15, 2017).
W.-J. Lee, M.-H. Lee and N.-W. Su, J. Sci. Food Agric., 91, 2348 (2011); https://doi.org/10.1002/jsfa.4466.
F.O.A. Tolulope and A. Adewole, J. Fuels, 2014, 904076 (2014); https://doi.org/10.1155/2014/904076.
Y.-C. Lin, S.-C. Chen, C.-E. Chen, P.-M. Yang and S.-R. Jhang, Fuel, 135, 435 (2014); https://doi.org/10.1016/j.fuel.2014.07.023.
P.D. Patil, V.G. Gude, A. Mannarswamy, P. Cooke, S. Munson-McGee, N. Nirmalakhandan, P. Lammers and S. Deng, Bioresour. Technol., 102, 1399 (2011); https://doi.org/10.1016/j.biortech.2010.09.046.
A. Mazubert, C. Taylor, J. Aubin and M. Poux, Bioresour. Technol., 161, 270 (2014); https://doi.org/10.1016/j.biortech.2014.03.011.
The 3-27 Conversion Test | Quality Testing; http://www.make-biodiesel.org/Quality-Testing/the-3-27-conversiontest.html. (accessed July 15, 2018).
W. Ye, Y. Gao, H. Ding, M. Liu, S. Liu, X. Han and J. Qi, Fuel, 180, 574 (2016); https://doi.org/10.1016/j.fuel.2016.04.084.
O. Levenspiel, Chemical Reaction Engineering, Wiley: New York, edn 3 (1999).
M. Barekati-Goudarzi, P.D. Muley, A. Clarens, D.B. Nde and D. Boldor, Biomass Bioenergy, 107, 353 (2017); https://doi.org/10.1016/j.biombioe.2017.09.006.
D.A. Lewis, J.D. Summers, T.C. Ward and J.E. McGrath, J. Polym. Sci. Part A Polym. Chem., 30, 1647 (1992); https://doi.org/10.1002/pola.1992.080300817.
L.M. Surhone, M.T. Timpledon and S.F. Marseken, Eyring Equation, Betascript Publishing (2010).
L. Wu, T. Wei, Z. Lin, Y. Zou, Z. Tong and J. Sun, Fuel, 182, 920 (2016); https://doi.org/10.1016/j.fuel.2016.05.065.
P. Nautiyal, K.A. Subramanian and M.G. Dastidar, Fuel, 135, 228 (2014); https://doi.org/10.1016/j.fuel.2014.06.063.
L.K. Ong, A. Kurniawan, A.C. Suwandi, C.X. Lin, X.S. Zhao and S. Ismadji, J. Supercrit. Fluids, 75, 11 (2013); https://doi.org/10.1016/j.supflu.2012.12.018.
A.R. Gupta and V.K. Rathod, Renew. Energy, 121, 757 (2018); https://doi.org/10.1016/j.renene.2017.11.027.
G. Moradi, Y. Davoodbeygi, M. Mohadesi and S. Hosseini, Can. J. Chem. Eng., 93, 819 (2015); https://doi.org/10.1002/cjce.22158.
M. Feyzi, N. Hosseini, N. Yaghobi and R. Ezzati, Chem. Phys. Lett., 677, 19 (2017); https://doi.org/10.1016/j.cplett.2017.03.014.
A.N. Sarve, M.N. Varma and S.S. Sonawane, Ultrason. Sonochem., 29, 288 (2016); https://doi.org/10.1016/j.ultsonch.2015.09.016.
D. Zeng, L. Yang and T. Fang, Fuel, 203, 739 (2017); https://doi.org/10.1016/j.fuel.2017.05.019.