Copyright (c) 2019 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorption Equilibrium and Kinetic Studies of Effect of ortho-Substitution to Benzoic Acid in Aqueous Phase Using Granular Activated Carbon
Corresponding Author(s) : Roy George
Asian Journal of Chemistry,
Vol. 31 No. 8 (2019): Vol 31 Issue 8
Abstract
Adsorption equilibrium and kinetics studies of effect of ortho-substituted benzoic acid in aqueous phase using granular activated carbon were investigated. The granular activated carbon (GAC) obtained from bituminous type coal having a surface area of 998 m2/g and loosely bounded and open pores morphology. The adorbates selected for this study was benzoic acid and its ortho-derivatives namely; salicylic acid, phthalic acid and o-toluic acid. The solubility of adsorbate in solvent affected the adsorption behaviour more pronouncly. The order of adsorption for adsorbates was found to be as: benzoic acid > salicylic acid > o-toluic acid > phthalic acid.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.Z. Kyzas and D.N. Bikiaris, Mar. Drugs, 13, 312 (2015); https://doi.org/10.3390/md13010312.
- J.-G. Yu, B.-Y. Yue, X.-W. Wu, Q. Liu, F.-P. Jiao, X.-Y. Jiang and X.-Q. Chen, Environ. Sci. Pollut. Res., 23, 5056 (2016); https://doi.org/10.1007/s11356-015-5880-x.
- Y. John, V.E. David Jr. and D. Mmereki, Int. J. Chem. Eng., 2018, 3975948 (2018); https://doi.org/10.1155/2018/3975948.
- M.A. Ashraf, Environ. Sci. Pollut. Res., 24, 4223 (2017); https://doi.org/10.1007/s11356-015-5225-9.
- E. Fattore, R. Fanelli and C. La Vecchia, J. Epidemiol. Community Health, 56, 831 (2002); https://doi.org/10.1136/jech.56.11.831.
- L.A. Thompson and W.S. Darwish, J. Toxicol., 2019, 2345283 (2019); https://doi.org/10.1155/2019/2345283.
- P.S. Pamidimukkala and H. Soni, J. Environ. Chem. Eng., 6, 3135 (2018); https://doi.org/10.1016/j.jece.2018.04.013.
- S.G. Muntean, M.A. Nistor, E. Muntean, A. Todea, R. Ianos and C. Pacurariu, J. Chem., 2018, 6249821 (2018); https://doi.org/10.1155/2018/6249821.
- D. Sinha, A. Supong and P.C. Bhomick, Int. J. Hydrol., 1, 91 (2017); https://doi.org/10.15406/ijh.2017.01.00017.
- K. Sartova, E. Omurzak, G. Kambarova, I. Dzhumaev and Z. Abdullaeva, Diamond Rel. Mater., 91, 90 (2019); https://doi.org/10.1016/j.diamond.2018.11.011.
- H. Wang, B. Wang, J. Li and T. Zhu, Sep. Purif. Technol., 209, 535 (2019); https://doi.org/10.1016/j.seppur.2018.07.076.
- F. Suo, X. Liu, C. Li, M. Yuan, B. Zhang, J. Wang, Y. Ma, Z. Lai and M. Ji, Int. J. Biol. Macromol., 121, 806 (2019); https://doi.org/10.1016/j.ijbiomac.2018.10.132.
- B. Li and C. Ma, Energy Procedia, 153, 471 (2018); https://doi.org/10.1016/j.egypro.2018.10.063.
- H.-J. Kim and Y.-K. Han, Curr. Appl. Phys., 16, 1437 (2016); https://doi.org/10.1016/j.cap.2016.08.009.
- N. Dejang, O. Somprasit and S. Chindaruksa, Energy Procedia, 79, 727 (2015); https://doi.org/10.1016/j.egypro.2015.11.556.
- M. Açýkyýldýz, A. Gürses and S. Karaca, Micropor. Mesopor. Mater., 198, 45 (2014); https://doi.org/10.1016/j.micromeso.2014.07.018.
- C.L. Chuang, P.C. Chiang and E.E. Chang, Chemosphere, 53, 17 (2003); https://doi.org/10.1016/S0045-6535(03)00357-6.
- A. Derylo-Marczewska, M. Blachnio, A.W. Marczewski, M. Seczkowska and B. Tarasiuk, Chemosphere, 214, 349 (2019); https://doi.org/10.1016/j.chemosphere.2018.09.088.
- L.G. Wade, Organic Chemistry, Pearson Education Limited: Harlow, p. 985 (2014).
- J. Péc, M. Strmenova, E. Palencarova, R. Pullmann, S. Funiakova, P. Visnovsky, J. Buchanec and Z. Lazarova, Cutis, 50, 307 (1992).
References
G.Z. Kyzas and D.N. Bikiaris, Mar. Drugs, 13, 312 (2015); https://doi.org/10.3390/md13010312.
J.-G. Yu, B.-Y. Yue, X.-W. Wu, Q. Liu, F.-P. Jiao, X.-Y. Jiang and X.-Q. Chen, Environ. Sci. Pollut. Res., 23, 5056 (2016); https://doi.org/10.1007/s11356-015-5880-x.
Y. John, V.E. David Jr. and D. Mmereki, Int. J. Chem. Eng., 2018, 3975948 (2018); https://doi.org/10.1155/2018/3975948.
M.A. Ashraf, Environ. Sci. Pollut. Res., 24, 4223 (2017); https://doi.org/10.1007/s11356-015-5225-9.
E. Fattore, R. Fanelli and C. La Vecchia, J. Epidemiol. Community Health, 56, 831 (2002); https://doi.org/10.1136/jech.56.11.831.
L.A. Thompson and W.S. Darwish, J. Toxicol., 2019, 2345283 (2019); https://doi.org/10.1155/2019/2345283.
P.S. Pamidimukkala and H. Soni, J. Environ. Chem. Eng., 6, 3135 (2018); https://doi.org/10.1016/j.jece.2018.04.013.
S.G. Muntean, M.A. Nistor, E. Muntean, A. Todea, R. Ianos and C. Pacurariu, J. Chem., 2018, 6249821 (2018); https://doi.org/10.1155/2018/6249821.
D. Sinha, A. Supong and P.C. Bhomick, Int. J. Hydrol., 1, 91 (2017); https://doi.org/10.15406/ijh.2017.01.00017.
K. Sartova, E. Omurzak, G. Kambarova, I. Dzhumaev and Z. Abdullaeva, Diamond Rel. Mater., 91, 90 (2019); https://doi.org/10.1016/j.diamond.2018.11.011.
H. Wang, B. Wang, J. Li and T. Zhu, Sep. Purif. Technol., 209, 535 (2019); https://doi.org/10.1016/j.seppur.2018.07.076.
F. Suo, X. Liu, C. Li, M. Yuan, B. Zhang, J. Wang, Y. Ma, Z. Lai and M. Ji, Int. J. Biol. Macromol., 121, 806 (2019); https://doi.org/10.1016/j.ijbiomac.2018.10.132.
B. Li and C. Ma, Energy Procedia, 153, 471 (2018); https://doi.org/10.1016/j.egypro.2018.10.063.
H.-J. Kim and Y.-K. Han, Curr. Appl. Phys., 16, 1437 (2016); https://doi.org/10.1016/j.cap.2016.08.009.
N. Dejang, O. Somprasit and S. Chindaruksa, Energy Procedia, 79, 727 (2015); https://doi.org/10.1016/j.egypro.2015.11.556.
M. Açýkyýldýz, A. Gürses and S. Karaca, Micropor. Mesopor. Mater., 198, 45 (2014); https://doi.org/10.1016/j.micromeso.2014.07.018.
C.L. Chuang, P.C. Chiang and E.E. Chang, Chemosphere, 53, 17 (2003); https://doi.org/10.1016/S0045-6535(03)00357-6.
A. Derylo-Marczewska, M. Blachnio, A.W. Marczewski, M. Seczkowska and B. Tarasiuk, Chemosphere, 214, 349 (2019); https://doi.org/10.1016/j.chemosphere.2018.09.088.
L.G. Wade, Organic Chemistry, Pearson Education Limited: Harlow, p. 985 (2014).
J. Péc, M. Strmenova, E. Palencarova, R. Pullmann, S. Funiakova, P. Visnovsky, J. Buchanec and Z. Lazarova, Cutis, 50, 307 (1992).