Copyright (c) 2026 Winfred J John

This work is licensed under a Creative Commons Attribution 4.0 International License.
Electronic and Molecular Insights into Vericiguat: A Combined DFT, SAR and Molecular Docking Approach
Corresponding Author(s) : J. Winfred Jebaraj
Asian Journal of Chemistry,
Vol. 38 No. 2 (2026): Vol 38 Issue 2, 2026
Abstract
A medication called vericiguat is employed to treat symptomatic chronic heart failure. This work utilised Gaussian 16W in the gaseous phase to perform density functional theory (DFT) algorithms at the B3LYP/6-311++G(d,p) level. The electronic structure, Mulliken charge distribution and electrostatic potential (ESP) map were analyzed to explain the fundamental properties of molecule. The hole-electron interaction studies revealed the nature of charge transfer. Theoretical vibrational and UV-Vis spectral analyses were performed to support structural characterisation. Fukui function analysis was employed to predict reactive sites toward electrophilic, nucleophilic and radical attacks. Aromaticity indices, non-covalent interaction (NCI) analysis, shaded surface mapping and localised orbital locator (LOL) projections were generated using Multiwfn 3.8. Furthermore, molecular docking and structure-activity relationship (SAR) studies were performed with Maestro (Schrödinger) against target protein 6JT2, providing insights into binding interactions and the potential therapeutic significance of vericiguat.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.W. Armstrong, B. Pieske, K.J. Anstrom, J. Ezekowitz, J. Butler, A.F. Hernandez, C.S.P. Lam, P. Ponikowski, A.A. Voors, S.E. McNulty, G. Jia, M.J. Patel, L. Roessig, J. Koglin and C.M. O’Connor, N. Engl. J. Med., 382, 1883 (2020); https://doi.org/10.1056/NEJMoa1915928
- C. Kang and Y.N. Lamb, Am. J. Cardiovasc. Drugs, 22, 451 (2022); https://doi.org/10.1007/s40256-022-00538-5
- A.K. Siddiqi, S.J. Greene, M. Fudim, R.J. Mentz, J. Butler and M.S. Khan, Expert Rev. Cardiovasc. Ther., 21, 245 (2023); https://doi.org/10.1080/14779072.2023.2189101
- A.J. Coats and H. Tolppanen, Drugs, 81, 1599 (2021); https://doi.org/10.1007/s40265-021-01586-y
- M. Senni, J. Lopez-Sendon, A. Cohen-Solal, P. Ponikowski, R. Nkulikiyinka, C. Freitas, V.M. Vlajnic, L. Roessig and B. Pieske, ESC Heart Fail., 9, 3791 (2022); https://doi.org/10.1002/ehf2.14050
- A. Olivella, L. Almenar-Bonet, P. Moliner, E. Coloma, A. Martínez-Rubio, M. Paz Bermejo, R. Boixeda, G. Cediel, A.B. Méndez Fernández and L. Facila Rubio, ESC Heart Fail., 11, 628 (2024); https://doi.org/10.1002/ehf2.14647
- C.M. Lombardi, G. Cimino, M. Pagnesi, A. Dell’Aquila, D. Tomasoni, A. Ravera, R. Inciardi, V. Carubelli, E. Vizzardi, S. Nodari, M. Emdin and A. Aimo, Curr. Cardiol. Rep., 23, 144 (2021); https://doi.org/10.1007/s11886-021-01580-6
- B.A. Tran, E.S. Serag-Bolos, J. Fernandez and A.C. Miranda, J. Pharm. Pract., 36, 905 (2023); https://doi.org/10.1177/08971900221087096
- C. Chen, J. Lv and C. Liu, Front. Endocrinol., 15, 1335531 (2024); https://doi.org/10.3389/fendo.2024.1335531
- C. Elıjah, J. Turkish Chem. Soc., 7, 77 (2020); https://doi.org/10.18596/jotcsa.527827
- B.K. Shukla and U. Yadava, Mater. Today Proc., 49, 3056 (2022); https://doi.org/10.1016/j.matpr.2020.10.903
- X. Zhang and Z. Geng, RSC Advances, 6, 62099 (2016); https://doi.org/10.1039/C6RA07780C
- K.B. Rai, R.R. Ghimire, C. Dhakal, K. Pudasainee and B. Siwakoti, J. Nepal Chemical Soc., 44, 1 (2024); https://doi.org/10.3126/jncs.v44i1.62675
- R.G. Parr, Density Functional Theory of Atoms and Molecules, In: Horizons of Quantum Chemistry: Proceedings of the Third International Congress of Quantum Chemistry Held at Kyoto, Japan, October 29-November 3, 1979. 1989. Springer.
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, B. Peng, F. Lipparini, F. Egidi, J. Gao, J. Goings, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, K. Morokuma, R.L. Martin, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 16, Revision B.01. Wallingford, CT, USA: Gaussian, Inc. (2016).
- R. Dennington, T. Keith and J. Millam, GaussView, Version 5.0. Wallingford, CT, USA: Gaussian, Inc. (2009).
- N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
- W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, 33 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
- T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
- Y. Kang, R. Liu, J.-X. Wu and L. Chen, Nature, 574, 206 (2019); https://doi.org/10.1038/s41586-019-1584-6
- G. Wu, I. Sharina and E. Martin, Front. Mol. Biosci., 9, 1007768 (2022); https://doi.org/10.3389/fmolb.2022.1007768
- G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju and W. Sherman, J. Comput. Aided Mol. Des., 27, 221 (2013); https://doi.org/10.1007/s10822-013-9644-8.
- A.M. Omar, A.S. Aljahdali, M.K. Safo, G.A. Mohamed and S.R.M. Ibrahim, Molecules, 28, 44 (2022); https://doi.org/10.3390/molecules28010044
- X.L. Fan, X.-Q. Wang, J.-T. Wang and H.-D. Li, Phys. Lett. A, 378, 1379 (2014); https://doi.org/10.1016/j.physleta.2014.03.035
- M.R. Silva, A.M. Beja, J.A. Paixão, L.L.G. Justino and A.J.F.N. Sobral, J. Mol. Struct., 785, 32 (2006); https://doi.org/10.1016/j.molstruc.2005.09.037
- J.L. Gázquez, J. Mex. Chem. Soc., 52, 3 (2008).
- S.B. Liu, Wuli Huaxue Xuebao, 25, 590 (2009); https://doi.org/10.3866/PKU.WHXB20090332
- P. Geerlings, F. De Proft and W. Langenaeker, Chem. Rev., 103, 1793 (2003); https://doi.org/10.1021/cr990029p
- H. Chermette, J. Comput. Chem., 20, 129 (1999); https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO; 2-A
- L.H. Mendoza-Huizar, J. Chem., 2015, 751527 (2015); https://doi.org/10.1155/2015/751527
- P.K. Chattaraj, U. Sarkar and D.R. Roy, Chem. Rev., 106, 2065 (2006); https://doi.org/10.1021/cr100149p
- J.I. Martínez-Araya, G. Salgado-Moran and D. Glossman-Mitnik, J. Phys. Chem. B, 117, 6339 (2013); https://doi.org/10.1021/jp400241q
- J.L. Gázquez, A. Cedillo and A. Vela, J. Phys. Chem. A, 111, 1966 (2007); https://doi.org/10.1021/jp065459f
- L.R. Domingo, M. Ríos-Gutiérrez and P. Pérez, Molecules, 21, 748 (2016); https://doi.org/10.3390/molecules21060748
- S. Xavier, S. Periandy and S. Ramalingam, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 306 (2015); https://doi.org/10.1016/j.saa.2014.08.039
- Z. Demircioğlu, Ç.A. Kaştaş and O. Büyükgüngör, J. Mol. Struct., 1091, 183 (2015); https://doi.org/10.1016/j.molstruc.2015.02.076
- H. Wang, S. Chen, D. Yong, X. Zhang, S. Li, W. Shao, X. Sun, B. Pan and Y. Xie, J. Am. Chem. Soc., 139, 4737 (2017); https://doi.org/10.1021/jacs.6b12273
- Z. Liu, T. Lu and Q. Chen, Carbon, 165, 461 (2020); https://doi.org/10.1016/j.carbon.2020.05.023
- M. Al-Zharani, M.S. Al-Eissa, H.A. Rudayni, D. Ali, S. Alkahtani, R. Surendrakumar and A. Idhayadhulla, J. King Saud Univ. Sci., 34, 101767 (2022); https://doi.org/10.1016/j.jksus.2021.101767
- W. Coblentz, Investigations of Infrared Spectra, Carnegie Institution of Washington, DC (1905).
- J. Poater, M. Duran, M. Solà and B. Silvi, Chem. Rev., 105, 3911 (2005); https://doi.org/10.1021/cr030085x
- C. Bird, Tetrahedron, 41, 1409 (1985); https://doi.org/10.1016/S0040-4020(01)96543-3
- E. Matito, M. Duran and M. Solà, J. Chem. Phys., 122, 014109 (2005); https://doi.org/10.1021/acs.joc.3c01539
- T.M. Krygowski, J. Chem. Inf. Comput. Sci., 33, 70 (1993); https://doi.org/10.1021/ci00011a011
- N. Sablon, F. De Proft, M. Solà and P. Geerlings, Phys. Chem. Chem. Phys., 14, 3960 (2012); https://doi.org/10.1039/c2cp23372j
- H. Schmider and A. Becke, J. Mol. Struct. Theochem., 527, 51 (2000); https://doi.org/10.1016/S0166-1280(00)00477-2
- Y. Zhao, P.M. Vanhoutte and S.W. Leung, J. Pharmacol. Sci., 129, 83 (2015); https://doi.org/10.1016/j.jphs.2015.09.002
- P.M. Schmidt, M. Schramm, H. Schröder, F. Wunder and J.-P. Stasch, J. Biol. Chem., 279, 3025 (2004); https://doi.org/10.1074/jbc.M310141200
- J.W. Denninger and M.A. Marletta, Biochim. Biophys. Acta Bioenerg., 1411, 334 (1999); https://doi.org/10.1016/S0005-2728(99)00024-9
- S.H. Francis, J.L. Busch and J.D. Corbin, Pharmacol. Rev., 62, 525 (2010); https://doi.org/10.1124/pr.110.002907
- N.I. Bork and V.O. Nikolaev, Int. J. Mol. Sci., 19, 801 (2018); https://doi.org/10.3390/ijms19030801
- M. Vohra, M. Amir, I. Osoro, A. Sharma and R. Kumar, Glob. Health J., 7, 123 (2023); https://doi.org/10.1016/j.glohj.2023.07.004
- K.R. Acharya, E.D. Sturrock, J.F. Riordan and M.R.W. Ehlers, Nat. Rev. Drug Discov., 2, 891 (2003); https://doi.org/10.1038/nrd1227
- B. Mobeen, M. Shah, H.M. Rehman, M.S. Jan and U. Rashid, Eur. J. Med. Chem., 279, 116834 (2024); https://doi.org/10.1016/j.ejmech.2024.116834
- R. Lipin, A.K. Dhanabalan, K. Gunasekaran and R.V. Solomon, SN Appl. Sci., 3, 110 (2021); https://doi.org/10.1007/s42452-020-04051-9
- J.A. Bell, Y. Cao, J.R. Gunn, T. Day, E. Gallicchio, Z. Zhou, R. Levy and R. Farid, Int. Tables Crystallogr., F, 534 (2012); https://doi.org/10.1107/97809553602060000864
- R. Farid, T. Day, R.A. Friesner and R.A. Pearlstein, Bioorg. Med. Chem., 14, 3160 (2006); https://doi.org/10.1016/j.bmc.2005.12.032
- W. Sherman, T. Day, M.P. Jacobson, R.A. Friesner and R. Farid, J. Med. Chem., 49, 534 (2006); https://doi.org/10.1021/jm050540c
References
P.W. Armstrong, B. Pieske, K.J. Anstrom, J. Ezekowitz, J. Butler, A.F. Hernandez, C.S.P. Lam, P. Ponikowski, A.A. Voors, S.E. McNulty, G. Jia, M.J. Patel, L. Roessig, J. Koglin and C.M. O’Connor, N. Engl. J. Med., 382, 1883 (2020); https://doi.org/10.1056/NEJMoa1915928
C. Kang and Y.N. Lamb, Am. J. Cardiovasc. Drugs, 22, 451 (2022); https://doi.org/10.1007/s40256-022-00538-5
A.K. Siddiqi, S.J. Greene, M. Fudim, R.J. Mentz, J. Butler and M.S. Khan, Expert Rev. Cardiovasc. Ther., 21, 245 (2023); https://doi.org/10.1080/14779072.2023.2189101
A.J. Coats and H. Tolppanen, Drugs, 81, 1599 (2021); https://doi.org/10.1007/s40265-021-01586-y
M. Senni, J. Lopez-Sendon, A. Cohen-Solal, P. Ponikowski, R. Nkulikiyinka, C. Freitas, V.M. Vlajnic, L. Roessig and B. Pieske, ESC Heart Fail., 9, 3791 (2022); https://doi.org/10.1002/ehf2.14050
A. Olivella, L. Almenar-Bonet, P. Moliner, E. Coloma, A. Martínez-Rubio, M. Paz Bermejo, R. Boixeda, G. Cediel, A.B. Méndez Fernández and L. Facila Rubio, ESC Heart Fail., 11, 628 (2024); https://doi.org/10.1002/ehf2.14647
C.M. Lombardi, G. Cimino, M. Pagnesi, A. Dell’Aquila, D. Tomasoni, A. Ravera, R. Inciardi, V. Carubelli, E. Vizzardi, S. Nodari, M. Emdin and A. Aimo, Curr. Cardiol. Rep., 23, 144 (2021); https://doi.org/10.1007/s11886-021-01580-6
B.A. Tran, E.S. Serag-Bolos, J. Fernandez and A.C. Miranda, J. Pharm. Pract., 36, 905 (2023); https://doi.org/10.1177/08971900221087096
C. Chen, J. Lv and C. Liu, Front. Endocrinol., 15, 1335531 (2024); https://doi.org/10.3389/fendo.2024.1335531
C. Elıjah, J. Turkish Chem. Soc., 7, 77 (2020); https://doi.org/10.18596/jotcsa.527827
B.K. Shukla and U. Yadava, Mater. Today Proc., 49, 3056 (2022); https://doi.org/10.1016/j.matpr.2020.10.903
X. Zhang and Z. Geng, RSC Advances, 6, 62099 (2016); https://doi.org/10.1039/C6RA07780C
K.B. Rai, R.R. Ghimire, C. Dhakal, K. Pudasainee and B. Siwakoti, J. Nepal Chemical Soc., 44, 1 (2024); https://doi.org/10.3126/jncs.v44i1.62675
R.G. Parr, Density Functional Theory of Atoms and Molecules, In: Horizons of Quantum Chemistry: Proceedings of the Third International Congress of Quantum Chemistry Held at Kyoto, Japan, October 29-November 3, 1979. 1989. Springer.
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, G.A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A.V. Marenich, J. Bloino, B.G. Janesko, R. Gomperts, B. Mennucci, H.P. Hratchian, J.V. Ortiz, A.F. Izmaylov, J.L. Sonnenberg, D. Williams-Young, F. Ding, B. Peng, F. Lipparini, F. Egidi, J. Gao, J. Goings, A. Petrone, T. Henderson, D. Ranasinghe, V.G. Zakrzewski, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J.A. Montgomery Jr., J.E. Peralta, F. Ogliaro, M.J. Bearpark, J.J. Heyd, E.N. Brothers, K.N. Kudin, V.N. Staroverov, T.A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A.P. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, J.M. Millam, M. Klene, C. Adamo, R. Cammi, J.W. Ochterski, K. Morokuma, R.L. Martin, O. Farkas, J.B. Foresman and D.J. Fox, Gaussian 16, Revision B.01. Wallingford, CT, USA: Gaussian, Inc. (2016).
R. Dennington, T. Keith and J. Millam, GaussView, Version 5.0. Wallingford, CT, USA: Gaussian, Inc. (2009).
N.M. O’boyle, A.L. Tenderholt and K.M. Langner, J. Comput. Chem., 29, 839 (2008); https://doi.org/10.1002/jcc.20823
W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 14, 33 (1996); https://doi.org/10.1016/0263-7855(96)00018-5
T. Lu and F. Chen, J. Comput. Chem., 33, 580 (2012); https://doi.org/10.1002/jcc.22885
Y. Kang, R. Liu, J.-X. Wu and L. Chen, Nature, 574, 206 (2019); https://doi.org/10.1038/s41586-019-1584-6
G. Wu, I. Sharina and E. Martin, Front. Mol. Biosci., 9, 1007768 (2022); https://doi.org/10.3389/fmolb.2022.1007768
G. Madhavi Sastry, M. Adzhigirey, T. Day, R. Annabhimoju and W. Sherman, J. Comput. Aided Mol. Des., 27, 221 (2013); https://doi.org/10.1007/s10822-013-9644-8.
A.M. Omar, A.S. Aljahdali, M.K. Safo, G.A. Mohamed and S.R.M. Ibrahim, Molecules, 28, 44 (2022); https://doi.org/10.3390/molecules28010044
X.L. Fan, X.-Q. Wang, J.-T. Wang and H.-D. Li, Phys. Lett. A, 378, 1379 (2014); https://doi.org/10.1016/j.physleta.2014.03.035
M.R. Silva, A.M. Beja, J.A. Paixão, L.L.G. Justino and A.J.F.N. Sobral, J. Mol. Struct., 785, 32 (2006); https://doi.org/10.1016/j.molstruc.2005.09.037
J.L. Gázquez, J. Mex. Chem. Soc., 52, 3 (2008).
S.B. Liu, Wuli Huaxue Xuebao, 25, 590 (2009); https://doi.org/10.3866/PKU.WHXB20090332
P. Geerlings, F. De Proft and W. Langenaeker, Chem. Rev., 103, 1793 (2003); https://doi.org/10.1021/cr990029p
H. Chermette, J. Comput. Chem., 20, 129 (1999); https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AID-JCC13>3.0.CO; 2-A
L.H. Mendoza-Huizar, J. Chem., 2015, 751527 (2015); https://doi.org/10.1155/2015/751527
P.K. Chattaraj, U. Sarkar and D.R. Roy, Chem. Rev., 106, 2065 (2006); https://doi.org/10.1021/cr100149p
J.I. Martínez-Araya, G. Salgado-Moran and D. Glossman-Mitnik, J. Phys. Chem. B, 117, 6339 (2013); https://doi.org/10.1021/jp400241q
J.L. Gázquez, A. Cedillo and A. Vela, J. Phys. Chem. A, 111, 1966 (2007); https://doi.org/10.1021/jp065459f
L.R. Domingo, M. Ríos-Gutiérrez and P. Pérez, Molecules, 21, 748 (2016); https://doi.org/10.3390/molecules21060748
S. Xavier, S. Periandy and S. Ramalingam, Spectrochim. Acta A Mol. Biomol. Spectrosc., 137, 306 (2015); https://doi.org/10.1016/j.saa.2014.08.039
Z. Demircioğlu, Ç.A. Kaştaş and O. Büyükgüngör, J. Mol. Struct., 1091, 183 (2015); https://doi.org/10.1016/j.molstruc.2015.02.076
H. Wang, S. Chen, D. Yong, X. Zhang, S. Li, W. Shao, X. Sun, B. Pan and Y. Xie, J. Am. Chem. Soc., 139, 4737 (2017); https://doi.org/10.1021/jacs.6b12273
Z. Liu, T. Lu and Q. Chen, Carbon, 165, 461 (2020); https://doi.org/10.1016/j.carbon.2020.05.023
M. Al-Zharani, M.S. Al-Eissa, H.A. Rudayni, D. Ali, S. Alkahtani, R. Surendrakumar and A. Idhayadhulla, J. King Saud Univ. Sci., 34, 101767 (2022); https://doi.org/10.1016/j.jksus.2021.101767
W. Coblentz, Investigations of Infrared Spectra, Carnegie Institution of Washington, DC (1905).
J. Poater, M. Duran, M. Solà and B. Silvi, Chem. Rev., 105, 3911 (2005); https://doi.org/10.1021/cr030085x
C. Bird, Tetrahedron, 41, 1409 (1985); https://doi.org/10.1016/S0040-4020(01)96543-3
E. Matito, M. Duran and M. Solà, J. Chem. Phys., 122, 014109 (2005); https://doi.org/10.1021/acs.joc.3c01539
T.M. Krygowski, J. Chem. Inf. Comput. Sci., 33, 70 (1993); https://doi.org/10.1021/ci00011a011
N. Sablon, F. De Proft, M. Solà and P. Geerlings, Phys. Chem. Chem. Phys., 14, 3960 (2012); https://doi.org/10.1039/c2cp23372j
H. Schmider and A. Becke, J. Mol. Struct. Theochem., 527, 51 (2000); https://doi.org/10.1016/S0166-1280(00)00477-2
Y. Zhao, P.M. Vanhoutte and S.W. Leung, J. Pharmacol. Sci., 129, 83 (2015); https://doi.org/10.1016/j.jphs.2015.09.002
P.M. Schmidt, M. Schramm, H. Schröder, F. Wunder and J.-P. Stasch, J. Biol. Chem., 279, 3025 (2004); https://doi.org/10.1074/jbc.M310141200
J.W. Denninger and M.A. Marletta, Biochim. Biophys. Acta Bioenerg., 1411, 334 (1999); https://doi.org/10.1016/S0005-2728(99)00024-9
S.H. Francis, J.L. Busch and J.D. Corbin, Pharmacol. Rev., 62, 525 (2010); https://doi.org/10.1124/pr.110.002907
N.I. Bork and V.O. Nikolaev, Int. J. Mol. Sci., 19, 801 (2018); https://doi.org/10.3390/ijms19030801
M. Vohra, M. Amir, I. Osoro, A. Sharma and R. Kumar, Glob. Health J., 7, 123 (2023); https://doi.org/10.1016/j.glohj.2023.07.004
K.R. Acharya, E.D. Sturrock, J.F. Riordan and M.R.W. Ehlers, Nat. Rev. Drug Discov., 2, 891 (2003); https://doi.org/10.1038/nrd1227
B. Mobeen, M. Shah, H.M. Rehman, M.S. Jan and U. Rashid, Eur. J. Med. Chem., 279, 116834 (2024); https://doi.org/10.1016/j.ejmech.2024.116834
R. Lipin, A.K. Dhanabalan, K. Gunasekaran and R.V. Solomon, SN Appl. Sci., 3, 110 (2021); https://doi.org/10.1007/s42452-020-04051-9
J.A. Bell, Y. Cao, J.R. Gunn, T. Day, E. Gallicchio, Z. Zhou, R. Levy and R. Farid, Int. Tables Crystallogr., F, 534 (2012); https://doi.org/10.1107/97809553602060000864
R. Farid, T. Day, R.A. Friesner and R.A. Pearlstein, Bioorg. Med. Chem., 14, 3160 (2006); https://doi.org/10.1016/j.bmc.2005.12.032
W. Sherman, T. Day, M.P. Jacobson, R.A. Friesner and R. Farid, J. Med. Chem., 49, 534 (2006); https://doi.org/10.1021/jm050540c