Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green Synthesis of Cerium Oxide Nanoparticles, Antibacterial Studies and as Catalyst for the Conversion of Cotton Seed Oil into Biodiesel
Corresponding Author(s) : Madhu Chennabasappa
Asian Journal of Chemistry,
Vol. 34 No. 9 (2022): Vol 34 Issue 9
Abstract
Cerium oxide nanoparticles were synthesized by employing solution combustion method using environmental friendly, polypeptide and acids rich, Butea monosperma seed powder as fuel. Phase purity, crystallite size were determined from X-ray diffraction (XRD). The trace amount of organic species attached to the surface of the nanoparticles is identified using Fourier transform infrared spectroscopy (FTIR). Morphological studies are performed on SEM and the particle shape-size distributions are studied using TEM. Electron diffraction on the nanoparticles revealed good crystallinity of the synthesized samples. Band gap increased with decreasing particle size was confirmed from the diffuse reflectance spectroscopy (DRS). White light luminescence capabilities of CeO2 nanoparticles were studied using photoluminescence spectroscopy. In vitro antibacterial activity studies to determine the zone of inhibition (ZOI) and catalytic property for the conversion of cotton seed oil into biodiesel were performed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.P. Holgado, R. Alvarez and G. Munuera, Appl. Surf. Sci., 161, 301 (2000); https://doi.org/10.1016/S0169-4332(99)00577-2
- M.C. Arnold, A.R. Badireddy, M.R. Wiesner, R.T. Di Giulio and J.N. Meyer, Arch. Environ. Contam. Toxicol., 65, 224 (2013); https://doi.org/10.1007/s00244-013-9905-5
- F. Perera, Int. J. Environ. Res. Public Health, 15, 16 (2018); https://doi.org/10.3390/ijerph15010016
- R. Heede, Climatic Change, 122, 229 (2014); https://doi.org/10.1007/s10584-013-0986-y
- A. Sundaresan and C.N.R. Rao, Nano Today, 4, 96 (2009); https://doi.org/10.1016/j.nantod.2008.10.002
- M. Zarezadeh Mehrizi, S. Ahmadi, R. Beygi and M. Asadi, Russ. J. Non-Ferrous Met., 59, 111 (2018); https://doi.org/10.3103/S1067821218010170
- K. Sohlberg, S.T. Pantelides and S.J. Pennycook, J. Am. Chem. Soc., 123, 6609 (2001); https://doi.org/10.1021/ja004008k
- T. Masui, H. Hirai, N. Imanaka, G. Adachi, T. Sakata and H. Mori, J. Mater. Sci. Lett., 21, 489 (2002); https://doi.org/10.1023/A:1015342925372
- W. Lin, Y. Huang, X. Zhou and Y. Ma, Int. J. Toxicol., 25, 451 (2006); https://doi.org/10.1080/10915810600959543
- A. Kopia, K. Kowalski, M. Chmielowska and C. Leroux, Surf. Sci., 602, 1313 (2008); https://doi.org/10.1016/j.susc.2007.12.041
- N. Agasti, M.A. Astle, G.A. Rance, J.A. Fernandes, J. Dupont and A.N. Khlobystov, Nano Lett., 20, 1161 (2020); https://doi.org/10.1021/acs.nanolett.9b04579
- Z. Xiong, Z. Lei, Z. Xu, X. Chen, B. Gong, Y. Zhao, H. Zhao, J. Zhang and C. Zheng, Biochem. Pharmacol., 18, 53 (2017); https://doi.org/10.1016/j.jcou.2017.01.013
- F.T. Li, J. Ran, M. Jaroniec and S.Z. Qiao, Nanoscale, 7, 17590 (2015); https://doi.org/10.1039/C5NR05299H
- W. Wen and J.-M. Wu, RSC Adv., 4, 58090 (2014); https://doi.org/10.1039/C4RA10145F
- X. Wang, M. Qin, F. Fang, B. Jia, H. Wu, X. Qu and A.A. Volinsky, Ceram. Int., 44, 4237 (2018); https://doi.org/10.1016/j.ceramint.2017.12.004
- D. Parviz, M. Kazemeini, A.M. Rashidi and K.J. Jozani, J. Nanopart. Res., 12, 1509 (2010); https://doi.org/10.1007/s11051-009-9727-6
- O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Perez and V.M.J. Perez, Cell Press, 31, 240 (2013); https://doi.org/10.1016/j.tibtech.2013.01.003
- I. Hussain, N.B. Singh, A. Singh, H. Singh and S.C. Singh, Biotechnol. Lett., 38, 545 (2016); https://doi.org/10.1007/s10529-015-2026-7
- B.S. Rohini, H. Nagabhushana, G.P. Darshan, R.B. Basavaraj, S.C. Sharma and R. Sudarmani, Appl. Nanosci., 7, 815 (2017); https://doi.org/10.1007/s13204-017-0611-x
- L.S. Reddy Yadav, K. Manjunath, B. Archana, C. Madhu, H. Raja Naika, H. Nagabhushana, C. Kavitha and G. Nagaraju, Eur. Phys. J. Plus, 131, 154 (2016); https://doi.org/10.1140/epjp/i2016-16154-y
- J. Malleshappa, H. Nagabhushana, S.C. Sharma, Y.S. Vidya, K.S. Anantharaju, S.C. Prashantha, B.D. Prasad, H.R. Naika, K. Lingaraju and B.S. Surendra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 149, 452 (2015); https://doi.org/10.1016/j.saa.2015.04.073
- M. Feyzi and Z. Shahbazi, J. Taiwan Inst. Chem. Eng., 71, 145 (2017); https://doi.org/10.1016/j.jtice.2016.11.023
- M. Feyzi and L. Norouzi, Renew. Energy, 94, 579 (2016); https://doi.org/10.1016/j.renene.2016.03.086
- E.A. Faria, J.S. Marques, I.M. Dias, R.D.A. Andrade, P.A.Z. Suarez and A.G.S. Prado, J. Braz. Chem. Soc., 20, 1732 (2009); https://doi.org/10.1590/S0103-50532009000900023
- Q. Zhou, H. Zhang, F. Chang, H. Li, H. Pan, W. Xue, D.-Y. Hu and S. Yang, J. Ind. Eng. Chem., 31, 385 (2015); https://doi.org/10.1016/j.jiec.2015.07.013
- M. Raghavendra, K.V. Yatish and H.S. Lalithamba, Eur. Phys. J. Plus, 132, 358 (2017); https://doi.org/10.1140/epjp/i2017-11627-1
- G. Baskar and S. Soumiya, Renew. Energy, 98, 101 (2016); https://doi.org/10.1016/j.renene.2016.02.068
- B. Gurunathan and A. Ravi, Bioresour. Technol., 188, 124 (2015); https://doi.org/10.1016/j.biortech.2015.01.012
- A. Pathak, K. Vajpai and S.K.Vajpai, Biomed. Pharmacol. J., 5, 45 (2012); https://doi.org/10.13005/bpj/319
- P. Tiwari, S. Jena and P.K. Sahu, Acta Sci. Pharm. Sci., 3, 19 (2019).
- M. Srivastava, S. Srivastava and S. Khatoon, Nat. Prod. Sci., 8, 83 (2002).
- I.B. Bankovic-Ilic, O.S. Stamenkovic and V.B. Veljkovic, Renew. Sustain. Energy Rev., 16, 3621 (2012); https://doi.org/10.1016/j.rser.2012.03.002
- N.G. Udayabhanu, G. Nagaraju, H. Nagabhushana, R.B. Basavaraj, G.K. Raghu, D. Suresh, H. Rajanaika and S.C. Sharma, Cryst. Growth Des., 16, 6828 (2016); https://doi.org/10.1021/acs.cgd.6b00936
- K.V. Yatish, H.S. Lalithamba, R. Suresh and H.K.E. Latha, Renew. Energy, 147, 310 (2020); https://doi.org/10.1016/j.renene.2019.08.139
- P.C. Trussell, E.A. Baird, D. Beall and G.A. Grant, Can. J. Res., 38, 61 (1944); https://doi.org/10.1139/cjr47e-002
- National Committee for Clinical Laboratory Standards N. M02-A12, Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, Ed. 12, pp. 35-73 (2015).
- P. Periyat, F. Laffir, S.A.M. Tofail and E. Magner, RSC Adv., 1, 1794 (2011); https://doi.org/10.1039/c1ra00524c
- T.N. Ravishankar, T. Ramakrishnappa, G. Nagaraju and H. Rajanaika, ChemistryOpen, 4, 146 (2015); https://doi.org/10.1002/open.201402046
- A.C. Tas, P.J. Majewski and F. Aldinger, J. Am. Ceram. Soc., 83, 2954 (2000); https://doi.org/10.1111/j.1151-2916.2000.tb01666.x
- A.J. Deotale and R.V. Nandedkar, Mater. Today Proc., 3, 2069 (2016); https://doi.org/10.1016/j.matpr.2016.04.110
- M. Farahmandjou, M. Zarinkamar and T.P. Firoozabadi, Rev. Mex. F’ýsica, 62, 496 (2016).
- M. Klinger and A. Jäger, J. Appl. Cryst., 48, 2012 (2015); https://doi.org/10.1107/S1600576715017252
- Q.R. Fang, T.A. Makal, M.D. Young and H.C. Zhou, Comments Inorg. Chem., 31, 165 (2010); https://doi.org/10.1080/02603594.2010.520254
- A. Wheeler, Adv. Catal., 3, 249 (1951); https://doi.org/10.1016/S0360-0564(08)60109-1
- M.M. Ali, H.S. Mahdi, A. Parveen and A. Azam, AIP Conf. Proc., 1953, 030044 (2018); https://doi.org/10.1063/1.5032379
- I.N. Bazhukova, S.Y. Sokovnin, V.G. Ilves, A.V. Myshkina, R.A. Vazirov, N. Pizurova and V.V. Kasyanova, Opt. Mater., 92, 136 (2019); https://doi.org/10.1016/j.optmat.2019.04.021
- K.M. Lee, S.B. Abd Hamid and C.W. Lai, J. Nanomater., 2015, 940857 (2015); https://doi.org/10.1155/2015/940857
References
J.P. Holgado, R. Alvarez and G. Munuera, Appl. Surf. Sci., 161, 301 (2000); https://doi.org/10.1016/S0169-4332(99)00577-2
M.C. Arnold, A.R. Badireddy, M.R. Wiesner, R.T. Di Giulio and J.N. Meyer, Arch. Environ. Contam. Toxicol., 65, 224 (2013); https://doi.org/10.1007/s00244-013-9905-5
F. Perera, Int. J. Environ. Res. Public Health, 15, 16 (2018); https://doi.org/10.3390/ijerph15010016
R. Heede, Climatic Change, 122, 229 (2014); https://doi.org/10.1007/s10584-013-0986-y
A. Sundaresan and C.N.R. Rao, Nano Today, 4, 96 (2009); https://doi.org/10.1016/j.nantod.2008.10.002
M. Zarezadeh Mehrizi, S. Ahmadi, R. Beygi and M. Asadi, Russ. J. Non-Ferrous Met., 59, 111 (2018); https://doi.org/10.3103/S1067821218010170
K. Sohlberg, S.T. Pantelides and S.J. Pennycook, J. Am. Chem. Soc., 123, 6609 (2001); https://doi.org/10.1021/ja004008k
T. Masui, H. Hirai, N. Imanaka, G. Adachi, T. Sakata and H. Mori, J. Mater. Sci. Lett., 21, 489 (2002); https://doi.org/10.1023/A:1015342925372
W. Lin, Y. Huang, X. Zhou and Y. Ma, Int. J. Toxicol., 25, 451 (2006); https://doi.org/10.1080/10915810600959543
A. Kopia, K. Kowalski, M. Chmielowska and C. Leroux, Surf. Sci., 602, 1313 (2008); https://doi.org/10.1016/j.susc.2007.12.041
N. Agasti, M.A. Astle, G.A. Rance, J.A. Fernandes, J. Dupont and A.N. Khlobystov, Nano Lett., 20, 1161 (2020); https://doi.org/10.1021/acs.nanolett.9b04579
Z. Xiong, Z. Lei, Z. Xu, X. Chen, B. Gong, Y. Zhao, H. Zhao, J. Zhang and C. Zheng, Biochem. Pharmacol., 18, 53 (2017); https://doi.org/10.1016/j.jcou.2017.01.013
F.T. Li, J. Ran, M. Jaroniec and S.Z. Qiao, Nanoscale, 7, 17590 (2015); https://doi.org/10.1039/C5NR05299H
W. Wen and J.-M. Wu, RSC Adv., 4, 58090 (2014); https://doi.org/10.1039/C4RA10145F
X. Wang, M. Qin, F. Fang, B. Jia, H. Wu, X. Qu and A.A. Volinsky, Ceram. Int., 44, 4237 (2018); https://doi.org/10.1016/j.ceramint.2017.12.004
D. Parviz, M. Kazemeini, A.M. Rashidi and K.J. Jozani, J. Nanopart. Res., 12, 1509 (2010); https://doi.org/10.1007/s11051-009-9727-6
O.V. Kharissova, H.V.R. Dias, B.I. Kharisov, B.O. Perez and V.M.J. Perez, Cell Press, 31, 240 (2013); https://doi.org/10.1016/j.tibtech.2013.01.003
I. Hussain, N.B. Singh, A. Singh, H. Singh and S.C. Singh, Biotechnol. Lett., 38, 545 (2016); https://doi.org/10.1007/s10529-015-2026-7
B.S. Rohini, H. Nagabhushana, G.P. Darshan, R.B. Basavaraj, S.C. Sharma and R. Sudarmani, Appl. Nanosci., 7, 815 (2017); https://doi.org/10.1007/s13204-017-0611-x
L.S. Reddy Yadav, K. Manjunath, B. Archana, C. Madhu, H. Raja Naika, H. Nagabhushana, C. Kavitha and G. Nagaraju, Eur. Phys. J. Plus, 131, 154 (2016); https://doi.org/10.1140/epjp/i2016-16154-y
J. Malleshappa, H. Nagabhushana, S.C. Sharma, Y.S. Vidya, K.S. Anantharaju, S.C. Prashantha, B.D. Prasad, H.R. Naika, K. Lingaraju and B.S. Surendra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 149, 452 (2015); https://doi.org/10.1016/j.saa.2015.04.073
M. Feyzi and Z. Shahbazi, J. Taiwan Inst. Chem. Eng., 71, 145 (2017); https://doi.org/10.1016/j.jtice.2016.11.023
M. Feyzi and L. Norouzi, Renew. Energy, 94, 579 (2016); https://doi.org/10.1016/j.renene.2016.03.086
E.A. Faria, J.S. Marques, I.M. Dias, R.D.A. Andrade, P.A.Z. Suarez and A.G.S. Prado, J. Braz. Chem. Soc., 20, 1732 (2009); https://doi.org/10.1590/S0103-50532009000900023
Q. Zhou, H. Zhang, F. Chang, H. Li, H. Pan, W. Xue, D.-Y. Hu and S. Yang, J. Ind. Eng. Chem., 31, 385 (2015); https://doi.org/10.1016/j.jiec.2015.07.013
M. Raghavendra, K.V. Yatish and H.S. Lalithamba, Eur. Phys. J. Plus, 132, 358 (2017); https://doi.org/10.1140/epjp/i2017-11627-1
G. Baskar and S. Soumiya, Renew. Energy, 98, 101 (2016); https://doi.org/10.1016/j.renene.2016.02.068
B. Gurunathan and A. Ravi, Bioresour. Technol., 188, 124 (2015); https://doi.org/10.1016/j.biortech.2015.01.012
A. Pathak, K. Vajpai and S.K.Vajpai, Biomed. Pharmacol. J., 5, 45 (2012); https://doi.org/10.13005/bpj/319
P. Tiwari, S. Jena and P.K. Sahu, Acta Sci. Pharm. Sci., 3, 19 (2019).
M. Srivastava, S. Srivastava and S. Khatoon, Nat. Prod. Sci., 8, 83 (2002).
I.B. Bankovic-Ilic, O.S. Stamenkovic and V.B. Veljkovic, Renew. Sustain. Energy Rev., 16, 3621 (2012); https://doi.org/10.1016/j.rser.2012.03.002
N.G. Udayabhanu, G. Nagaraju, H. Nagabhushana, R.B. Basavaraj, G.K. Raghu, D. Suresh, H. Rajanaika and S.C. Sharma, Cryst. Growth Des., 16, 6828 (2016); https://doi.org/10.1021/acs.cgd.6b00936
K.V. Yatish, H.S. Lalithamba, R. Suresh and H.K.E. Latha, Renew. Energy, 147, 310 (2020); https://doi.org/10.1016/j.renene.2019.08.139
P.C. Trussell, E.A. Baird, D. Beall and G.A. Grant, Can. J. Res., 38, 61 (1944); https://doi.org/10.1139/cjr47e-002
National Committee for Clinical Laboratory Standards N. M02-A12, Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard, Ed. 12, pp. 35-73 (2015).
P. Periyat, F. Laffir, S.A.M. Tofail and E. Magner, RSC Adv., 1, 1794 (2011); https://doi.org/10.1039/c1ra00524c
T.N. Ravishankar, T. Ramakrishnappa, G. Nagaraju and H. Rajanaika, ChemistryOpen, 4, 146 (2015); https://doi.org/10.1002/open.201402046
A.C. Tas, P.J. Majewski and F. Aldinger, J. Am. Ceram. Soc., 83, 2954 (2000); https://doi.org/10.1111/j.1151-2916.2000.tb01666.x
A.J. Deotale and R.V. Nandedkar, Mater. Today Proc., 3, 2069 (2016); https://doi.org/10.1016/j.matpr.2016.04.110
M. Farahmandjou, M. Zarinkamar and T.P. Firoozabadi, Rev. Mex. F’ýsica, 62, 496 (2016).
M. Klinger and A. Jäger, J. Appl. Cryst., 48, 2012 (2015); https://doi.org/10.1107/S1600576715017252
Q.R. Fang, T.A. Makal, M.D. Young and H.C. Zhou, Comments Inorg. Chem., 31, 165 (2010); https://doi.org/10.1080/02603594.2010.520254
A. Wheeler, Adv. Catal., 3, 249 (1951); https://doi.org/10.1016/S0360-0564(08)60109-1
M.M. Ali, H.S. Mahdi, A. Parveen and A. Azam, AIP Conf. Proc., 1953, 030044 (2018); https://doi.org/10.1063/1.5032379
I.N. Bazhukova, S.Y. Sokovnin, V.G. Ilves, A.V. Myshkina, R.A. Vazirov, N. Pizurova and V.V. Kasyanova, Opt. Mater., 92, 136 (2019); https://doi.org/10.1016/j.optmat.2019.04.021
K.M. Lee, S.B. Abd Hamid and C.W. Lai, J. Nanomater., 2015, 940857 (2015); https://doi.org/10.1155/2015/940857