Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Development of Potent SARS-CoV 3CL Protease Inhibitors: In silico Analogues Designing of Darunavir, Molecular Modelling and Molecular Dynamic Simulation
Corresponding Author(s) : Muhammad Imran
Asian Journal of Chemistry,
Vol. 34 No. 9 (2022): Vol 34 Issue 9
Abstract
COVID pandemic initiated in early 2019 and the origin from where it initiated was Wuhan city of China. It changed the whole world. A huge population died due to COVID-19 in spite of taking precautions. New treatments and vaccines are introduced for the treatment and prevention. Among successful treatments, antivirals were found effective against COVID-19. But there is a need to find derivatives, which could be more effective for the treatment of COVID-19. The current research is focused on computational studies on one of the antiviral, darunavir. A computational strategy, molecular docking and molecular dynamic simulation techniques is presented to discover the potent analogues of darunavir for inhibiting protease 3CLpro of SARS-CoV2. The newly discovered X-ray structure (PDB ID: 6LU7) was selected for docking study and generated analogues were docked. The docking results showed that the compounds were bound in the active site of receptor with good binding affinity. It was concluded that compounds D8 and D15 were have good binding affinity value of -9.85 and -8.95 kcal/mol, respectively and these compounds were selected for molecular dynamic simulation (MDS) study to check their stability in pocket of receptor.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Song, Y. Xu, L. Bao, L. Zhang, P. Yu, Y. Qu, H. Zhu, W. Zhao, Y. Han and C. Qin, Viruses, 11, 59 (2019); https://doi.org/10.3390/v11010059
- E.R. Gaunt, A. Hardie, E.C. Claas, P. Simmonds and K.E. Templeton, J. Clin. Microbiol., 48, 2940 (2010); https://doi.org/10.1128/JCM.00636-10
- T.K. Cabeça, C. Granato and N. Bellei, Influenza Other Respir. Viruses, 7, 1040 (2013); https://doi.org/10.1111/irv.12101
- R.M. Anderson, C. Fraser, A.C. Ghani, C.A. Donnelly, S. Riley, N.M. Ferguson, G.M. Leung, T.H. Lam and A.J. Hedley, Philos. Trans. R. Soc. Lond. B Biol. Sci., 359, 1091 (2004); https://doi.org/10.1098/rstb.2004.1490
- R. Channappanavar and S. Perlman, Semin. Immunopathol., 39, 529 (2017); https://doi.org/10.1007/s00281-017-0629-x
- X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia, H. Liu, Y. Wu, L. Zhang, Z. Yu, M. Fang, T. Yu, Y. Wang, S. Pan, X. Zou, S. Yuan and Y. Shang, Lancet Respir. Med., 8, 475 (2020); https://doi.org/10.1016/S2213-2600(20)30079-5
- S. Tian, Y. Xiong, H. Liu, L. Niu, J. Guo, M. Liao and S.-Y. Xiao, Mod. Pathol., 33, 1007 (2020); https://doi.org/10.1038/s41379-020-0536-x
- S. Shi, M. Qin, B. Shen, Y. Cai, T. Liu, F. Yang, W. Gong, X. Liu, J. Liang, Q. Zhao, H. Huang, B. Yang and C. Huang, JAMA Cardiol., 5, 802 (2020); https://doi.org/10.1001/jamacardio.2020.0950
- J.F.-W. Chan, S. Yuan, K.-H. Kok, K.K.-W. To, H. Chu, J. Yang, F. Xing, J. Liu, C.C.-Y. Yip, R.W.-S. Poon, H.-W. Tsoi, S.K.-F. Lo, K.-H. Chan, V.K.-M. Poon, W.-M. Chan, J.D. Ip, J.-P. Cai, V.C.-C. Cheng, H. Chen, C.K.-M. Hui and K.-Y. Yuen, Lancet, 395, 514 (2020); https://doi.org/10.1016/S0140-6736(20)30154-9
- S. Felsenstein, J.A. Herbert, P.S. McNamara and C.M. Hedrich, Clin. Immunol., 215, 108448 (2020); https://doi.org/10.1016/j.clim.2020.108448
- A. Savarino, J.R. Boelaert, A. Cassone, G. Majori and R. Cauda, Lancet Infect. Dis., 3, 722 (2003); https://doi.org/10.1016/S1473-3099(03)00806-5
- D. Haydar, T.J. Cory, S.E. Birket, B.S. Murphy, K.R. Pennypacker, A.P. Sinai and D.J. Feola, J. Immunol., 203, 1021 (2019); https://doi.org/10.4049/jimmunol.1801228
- C.J. Gordon, E.P. Tchesnokov, J.Y. Feng, D.P. Porter and M. Götte, J. Biol. Chem., 295, 4773 (2020); https://doi.org/10.1074/jbc.AC120.013056
- J. Shuter, Ther. Clin. Risk Manag., 4, 1023 (2008); https://doi.org/10.2147/TCRM.S3285
- Z.A. Abassi, K. Skorecki, S.N. Heyman, S. Kinaneh and Z. Armaly, Am. J. Physiol. Lung Cell. Mol. Physiol., 318, L1020 (2020); https://doi.org/10.1152/ajplung.00097.2020
- C.Y. Cheung, L.L. Poon, I.H. Ng, W. Luk, S.-F. Sia, M.H. Wu, K.-H. Chan, K.-Y. Yuen, S. Gordon, Y. Guan and J.S.M. Peiris, J. Virol., 79, 7819 (2005); https://doi.org/10.1128/JVI.79.12.7819-7826.2005
- E.M. Bloch, S. Shoham, A. Casadevall, B.S. Sachais, B. Shaz, J.L. Winters, C. Van Buskirk, B.J. Grossman, M. Joyner, J.P. Henderson, A. Pekosz, B. Lau, A. Wesolowski, L. Katz, H. Shan, P.G. Auwaerter, D. Thomas, D.J. Sullivan, N. Paneth, E. Gehrie, S. Spitalnik, E.A. Hod, L. Pollack, W.T. Nicholson, L. Pirofski, J.A. Bailey and A.A.R. Tobian, J. Clin. Invest., 130, 2757 (2020); https://doi.org/10.1172/JCI138745
- X. Zhang, K. Song, F. Tong, M. Fei, H. Guo, Z. Lu, J. Wang and C. Zheng, Blood Adv., 4, 1307 (2020); https://doi.org/10.1182/bloodadvances.2020001907
- K.G. Šašková, M. Kozíšek, P. Rezáèová, J. Brynda, T. Yashina, R.M. Kagan and J. Konvalinka, J. Virol., 83, 8810 (2009); https://doi.org/10.1128/JVI.00451-09
- O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
- Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao and H. Yang, Nature, 582, 289 (2020); https://doi.org/10.1038/s41586-020-2223-y
- S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme and M. Schroeder, Nucleic Acids Res., 43(W1), W443 (2015); https://doi.org/10.1093/nar/gkv315
- B.R. Brooks, C.L. Brooks III, A.D. Mackerell Jr., L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York and M. Karplus, J. Comput. Chem., 30, 1545 (2009); https://doi.org/10.1002/jcc.21287
- W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey and M.L. Klein, J. Chem. Phys., 79, 926 (1983); https://doi.org/10.1063/1.445869
- A.D. MacKerell Jr., D. Bashford, M. Bellott, R.L. Dunbrack Jr., J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. JosephMcCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin and M. Karplus, J. Phys. Chem. B, 102, 3586 (1998); https://doi.org/10.1021/jp973084f
- R.W. Pastor, B.R. Brooks and A. Szabo, Mol. Phys., 65, 1409 (1988); https://doi.org/10.1080/00268978800101881
- T. Darden, D. York and L. Pedersen, J. Chem. Phys., 98, 10089 (1993); https://doi.org/10.1063/1.464397
References
Z. Song, Y. Xu, L. Bao, L. Zhang, P. Yu, Y. Qu, H. Zhu, W. Zhao, Y. Han and C. Qin, Viruses, 11, 59 (2019); https://doi.org/10.3390/v11010059
E.R. Gaunt, A. Hardie, E.C. Claas, P. Simmonds and K.E. Templeton, J. Clin. Microbiol., 48, 2940 (2010); https://doi.org/10.1128/JCM.00636-10
T.K. Cabeça, C. Granato and N. Bellei, Influenza Other Respir. Viruses, 7, 1040 (2013); https://doi.org/10.1111/irv.12101
R.M. Anderson, C. Fraser, A.C. Ghani, C.A. Donnelly, S. Riley, N.M. Ferguson, G.M. Leung, T.H. Lam and A.J. Hedley, Philos. Trans. R. Soc. Lond. B Biol. Sci., 359, 1091 (2004); https://doi.org/10.1098/rstb.2004.1490
R. Channappanavar and S. Perlman, Semin. Immunopathol., 39, 529 (2017); https://doi.org/10.1007/s00281-017-0629-x
X. Yang, Y. Yu, J. Xu, H. Shu, J. Xia, H. Liu, Y. Wu, L. Zhang, Z. Yu, M. Fang, T. Yu, Y. Wang, S. Pan, X. Zou, S. Yuan and Y. Shang, Lancet Respir. Med., 8, 475 (2020); https://doi.org/10.1016/S2213-2600(20)30079-5
S. Tian, Y. Xiong, H. Liu, L. Niu, J. Guo, M. Liao and S.-Y. Xiao, Mod. Pathol., 33, 1007 (2020); https://doi.org/10.1038/s41379-020-0536-x
S. Shi, M. Qin, B. Shen, Y. Cai, T. Liu, F. Yang, W. Gong, X. Liu, J. Liang, Q. Zhao, H. Huang, B. Yang and C. Huang, JAMA Cardiol., 5, 802 (2020); https://doi.org/10.1001/jamacardio.2020.0950
J.F.-W. Chan, S. Yuan, K.-H. Kok, K.K.-W. To, H. Chu, J. Yang, F. Xing, J. Liu, C.C.-Y. Yip, R.W.-S. Poon, H.-W. Tsoi, S.K.-F. Lo, K.-H. Chan, V.K.-M. Poon, W.-M. Chan, J.D. Ip, J.-P. Cai, V.C.-C. Cheng, H. Chen, C.K.-M. Hui and K.-Y. Yuen, Lancet, 395, 514 (2020); https://doi.org/10.1016/S0140-6736(20)30154-9
S. Felsenstein, J.A. Herbert, P.S. McNamara and C.M. Hedrich, Clin. Immunol., 215, 108448 (2020); https://doi.org/10.1016/j.clim.2020.108448
A. Savarino, J.R. Boelaert, A. Cassone, G. Majori and R. Cauda, Lancet Infect. Dis., 3, 722 (2003); https://doi.org/10.1016/S1473-3099(03)00806-5
D. Haydar, T.J. Cory, S.E. Birket, B.S. Murphy, K.R. Pennypacker, A.P. Sinai and D.J. Feola, J. Immunol., 203, 1021 (2019); https://doi.org/10.4049/jimmunol.1801228
C.J. Gordon, E.P. Tchesnokov, J.Y. Feng, D.P. Porter and M. Götte, J. Biol. Chem., 295, 4773 (2020); https://doi.org/10.1074/jbc.AC120.013056
J. Shuter, Ther. Clin. Risk Manag., 4, 1023 (2008); https://doi.org/10.2147/TCRM.S3285
Z.A. Abassi, K. Skorecki, S.N. Heyman, S. Kinaneh and Z. Armaly, Am. J. Physiol. Lung Cell. Mol. Physiol., 318, L1020 (2020); https://doi.org/10.1152/ajplung.00097.2020
C.Y. Cheung, L.L. Poon, I.H. Ng, W. Luk, S.-F. Sia, M.H. Wu, K.-H. Chan, K.-Y. Yuen, S. Gordon, Y. Guan and J.S.M. Peiris, J. Virol., 79, 7819 (2005); https://doi.org/10.1128/JVI.79.12.7819-7826.2005
E.M. Bloch, S. Shoham, A. Casadevall, B.S. Sachais, B. Shaz, J.L. Winters, C. Van Buskirk, B.J. Grossman, M. Joyner, J.P. Henderson, A. Pekosz, B. Lau, A. Wesolowski, L. Katz, H. Shan, P.G. Auwaerter, D. Thomas, D.J. Sullivan, N. Paneth, E. Gehrie, S. Spitalnik, E.A. Hod, L. Pollack, W.T. Nicholson, L. Pirofski, J.A. Bailey and A.A.R. Tobian, J. Clin. Invest., 130, 2757 (2020); https://doi.org/10.1172/JCI138745
X. Zhang, K. Song, F. Tong, M. Fei, H. Guo, Z. Lu, J. Wang and C. Zheng, Blood Adv., 4, 1307 (2020); https://doi.org/10.1182/bloodadvances.2020001907
K.G. Šašková, M. Kozíšek, P. Rezáèová, J. Brynda, T. Yashina, R.M. Kagan and J. Konvalinka, J. Virol., 83, 8810 (2009); https://doi.org/10.1128/JVI.00451-09
O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2010); https://doi.org/10.1002/jcc.21334
Z. Jin, X. Du, Y. Xu, Y. Deng, M. Liu, Y. Zhao, B. Zhang, X. Li, L. Zhang, C. Peng, Y. Duan, J. Yu, L. Wang, K. Yang, F. Liu, R. Jiang, X. Yang, T. You, X. Liu, X. Yang, F. Bai, H. Liu, X. Liu, L.W. Guddat, W. Xu, G. Xiao, C. Qin, Z. Shi, H. Jiang, Z. Rao and H. Yang, Nature, 582, 289 (2020); https://doi.org/10.1038/s41586-020-2223-y
S. Salentin, S. Schreiber, V.J. Haupt, M.F. Adasme and M. Schroeder, Nucleic Acids Res., 43(W1), W443 (2015); https://doi.org/10.1093/nar/gkv315
B.R. Brooks, C.L. Brooks III, A.D. Mackerell Jr., L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch, A. Caflisch, L. Caves, Q. Cui, A.R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R.W. Pastor, C.B. Post, J.Z. Pu, M. Schaefer, B. Tidor, R.M. Venable, H.L. Woodcock, X. Wu, W. Yang, D.M. York and M. Karplus, J. Comput. Chem., 30, 1545 (2009); https://doi.org/10.1002/jcc.21287
W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey and M.L. Klein, J. Chem. Phys., 79, 926 (1983); https://doi.org/10.1063/1.445869
A.D. MacKerell Jr., D. Bashford, M. Bellott, R.L. Dunbrack Jr., J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. JosephMcCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiórkiewicz-Kuczera, D. Yin and M. Karplus, J. Phys. Chem. B, 102, 3586 (1998); https://doi.org/10.1021/jp973084f
R.W. Pastor, B.R. Brooks and A. Szabo, Mol. Phys., 65, 1409 (1988); https://doi.org/10.1080/00268978800101881
T. Darden, D. York and L. Pedersen, J. Chem. Phys., 98, 10089 (1993); https://doi.org/10.1063/1.464397