Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Adsorptive Removal of Acetic Acid by Walnut Shell as Low-Cost Adsorbent
Corresponding Author(s) : Kavita Kulkarni
Asian Journal of Chemistry,
Vol. 34 No. 9 (2022): Vol 34 Issue 9
Abstract
Walnut shell was used as an adsorbent for adsorption of acetic acid. Batch experiments were conducted for adsorption equilibrium studies and kinetics by using walnut shell. Optimization of parameters like temperature, rotation, adsorbent dose and contact time were studied. Amount of acetic acid adsorbed was analyzed by titration. Equilibrium condition was investigated. Adsorption kinetics were tested for different models and found best suitable for intraparticle diffusion model. The batch experimental data was fitted to Langmuir, Freundlich, Temkin, Sips and Redlich-Peterson isotherms. The best fitted isotherm was Langmuir isotherm. Regeneration was tried by heating the adsorbent in microwave at 200 ºC. Up to three cycles adsorbent gave good efficiency for adsorption of acetic acid.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- H. Wu, L. Valentino, S. Riggio, M. Holtzapple and M. Urgun-Demirtas, Sep. Purif. Technol., 265, 118108 (2021); https://doi.org/10.1016/j.seppur.2020.118108
- S. Suwal, J. Li, A.S. Engelberth and J.-Y. Huang, Food Bioprod. Process., 109, 41 (2018); https://doi.org/10.1016/j.fbp.2018.02.010
- A. Rehouma, B. Belaissaoui, A. Hannachi and L. Muhr, Desalination Water Treat., 51, 511 (2013); https://doi.org/10.1080/19443994.2012.715421
- U. Chukwu and M. Cheryan, J. Food Sci., 61, 1223 (1996); https://doi.org/10.1111/j.1365-2621.1996.tb10965.x
- Y.-X. Jia, X. Chen, M. Wang and B.-B. Wang, Sep. Purif. Technol., 171, 11 (2016); https://doi.org/10.1016/j.seppur.2016.07.009
- G.-H. Kim, S.-J. Park and B.-H. Um, Ind. Crops Prod., 89, 34 (2016); https://doi.org/10.1016/j.indcrop.2016.04.056
- S. Li, V.A. Tuan, R.D. Noble and J.L. Falconer, Ind. Eng. Chem. Res., 40, 6165 (2001); https://doi.org/10.1021/ie010525f
- H.S. Samanta, S.K. Ray, P. Das and N.R. Singh, J. Chem. Technol. Biotechnol., 87, 608 (2012); https://doi.org/10.1002/jctb.2752
- Q. Liu, R.D. Noble, J.L. Falconer and H.H. Funke, J. Membr. Sci., 117, 163 (1996); https://doi.org/10.1016/0376-7388(96)00058-0
- C.B. Rasrendra, B. Girisuta, H.H. van de Bovenkamp, J.G.M. Winkelman, E.J. Leijenhorst, R.H. Venderbosch, M. Windt, D. Meier and H.J. Heeres, Chem. Eng. J., 176, 244 (2011); https://doi.org/10.1016/j.cej.2011.08.082
- L. Ahsan, M.S. Jahan and Y. Ni, Ind. Eng. Chem. Res., 52, 9270 (2013); https://doi.org/10.1021/ie401285v
- 12 M. Henczka and M. Djas, J. Supercrit. Fluids, 110, 154 (2016). https://doi.org/10.1016/j.supflu.2015.11.018
- S.K. Ganguly and A.N. Goswami, Sep. Sci. Technol., 31, 1267 (1996); https://doi.org/10.1080/01496399608006950
- Ö. Özcan, I. Inci and Y.S. Asçi, J. Chem. Eng. Data, 58, 583 (2013); https://doi.org/10.1021/je301064t
- D.J.D. Dina, A.R. Ntieche, J.N. Ndi and M.J. Ketcha, Res. J. Chem. Sci., 2, 42 (2012).
- J. Golob, V. Grilc and B. Zadnik, Ind. Eng. Chem. Process Des. Dev., 20, 433 (1981); https://doi.org/10.1021/i200014a004
- L. Yu, Q. Guo, J. Hao and W. Jiang, Desalination, 129, 283 (2000); https://doi.org/10.1016/S0011-9164(00)00068-0
- K.D. Patil and B.D. Kulkarni, J. Water Pollut. Purif. Res., 1, 13 (2014).
- D. Yagyu, T. Ohishi, T. Igarashi, Y. Okumura, T. Nakajo, Y. Mori and S. Kobayashi, Chemosphere, 91, 61 (2013); https://doi.org/10.1016/j.chemosphere.2012.11.078
- F.L.D. Cloete and A.P. Marais, Ind. Eng. Chem. Res., 34, 2464 (1995); https://doi.org/10.1021/ie00046a030
- R.K. Rajoriya, B. Prasad, I.M. Mishra and K.L. Wasewar, Chem. Biochem. Eng. Q., 21, 219 (2007).
- H. Zhang, X. Lan, P. Bai and X. Guo, Chem. Eng. Res. Des., 111, 127 (2016); https://doi.org/10.1016/j.cherd.2016.04.020
- G. Daniel, U. Ane and O. And Inmaculada, Ind. Eng. Chem. Res., 44, 977 (2005).
- N. Kannan and A. Xavier, Toxicol. Environ. Chem., 79, 95 (2001); https://doi.org/10.1080/02772240109358979
- Z. Li, F. Calaza, F. Gao and W.T. Tysoe, Surf. Sci., 601, 1351 (2007); https://doi.org/10.1016/j.susc.2006.12.079
- A. Jahanban-Esfahlan, R. Jahanban-Esfahlan, M. Tabibiazar, L. Roufegarinejad and R. Amarowicz, RSC Adv., 10, 7026 (2020); https://doi.org/10.1039/C9RA10084A
- H. Wu, W. Sun, H. Wei, Y. Zhao, C. Jin, X. Yang, X. Rong and C. Sun, Water Sci. Technol., 84, 697 (2021); https://doi.org/10.2166/wst.2021.247
- L. Jiang, H. Yu, L. Pei and X. Hou, J. Nanomater., 2018, 9167938 (2018); https://doi.org/10.1155/2018/9167938
- Y.M. Lee, J.S. Kang, S.Y. Nam and C.H. Choi, Sep. Sci. Technol., 36, 457 (2001); https://doi.org/10.1081/SS-100102938
- K. Chen, L. Du, P. Gao, J. Zheng, Y. Liu and H. Lin, Front Chem., 9, 646492 (2021); https://doi.org/10.3389/fchem.2021.646492
- K.S. Kulkarni, G.M. Bhogale and R. Nalawade, Korean J. Chem. Eng., 35, 153 (2018); https://doi.org/10.1007/s11814-017-0254-3
- L. Donald, Environmental Soil Chemistry, Academic Press, Ed.: 2, p. 133 (2003).
- Saruchi and V. Kumar, Arab. J. Chem., 12, 316 (2019); https://doi.org/10.1016/j.arabjc.2016.11.009
- N. Tzabar and H.J.M. ter Brake, Adsorption, 22, 901 (2016); https://doi.org/10.1007/s10450-016-9794-9
- F.-C. Wu, B.-L. Liu, K.-T. Wu and R.-L. Tseng, Chem. Eng. J., 162, 21 (2010); https://doi.org/10.1016/j.cej.2010.03.006
- A.K. Jain, K.V. Gupta, S. Jain and Suhas, Environ. Sci. Technol., 38, 1195 (2004); https://doi.org/10.1021/es034412u
- S. Nethaji, A. Sivasamy and A.B. Mandal, Int. J. Environ. Sci. Technol., 10, 231 (2013); https://doi.org/10.1007/s13762-012-0112-0
- W. Sun, X. Wang, J. Yang, J. Lu, H. Han, Y. Zhang and J. Wang, J. Membr. Sci., 335, 83 (2009); https://doi.org/10.1016/j.memsci.2009.02.037
- A. Pholosi, E.B. Naidoo and A.E. Ofomaja, S. Afr. J. Chem. Eng., 32, 39 (2020); https://doi.org/10.1016/j.sajce.2020.01.005
- C.C. de Souza, L.Z.M. de Souza, M. Yilmaz, M.A. de Oliveira, A.C. da Silva Bezerra, E.F. da Silva, M.R. Dumont and A.R.T. Machado, Cleaner Mater., 3, 100052 (2022); https://doi.org/10.1016/j.clema.2022.100052
References
H. Wu, L. Valentino, S. Riggio, M. Holtzapple and M. Urgun-Demirtas, Sep. Purif. Technol., 265, 118108 (2021); https://doi.org/10.1016/j.seppur.2020.118108
S. Suwal, J. Li, A.S. Engelberth and J.-Y. Huang, Food Bioprod. Process., 109, 41 (2018); https://doi.org/10.1016/j.fbp.2018.02.010
A. Rehouma, B. Belaissaoui, A. Hannachi and L. Muhr, Desalination Water Treat., 51, 511 (2013); https://doi.org/10.1080/19443994.2012.715421
U. Chukwu and M. Cheryan, J. Food Sci., 61, 1223 (1996); https://doi.org/10.1111/j.1365-2621.1996.tb10965.x
Y.-X. Jia, X. Chen, M. Wang and B.-B. Wang, Sep. Purif. Technol., 171, 11 (2016); https://doi.org/10.1016/j.seppur.2016.07.009
G.-H. Kim, S.-J. Park and B.-H. Um, Ind. Crops Prod., 89, 34 (2016); https://doi.org/10.1016/j.indcrop.2016.04.056
S. Li, V.A. Tuan, R.D. Noble and J.L. Falconer, Ind. Eng. Chem. Res., 40, 6165 (2001); https://doi.org/10.1021/ie010525f
H.S. Samanta, S.K. Ray, P. Das and N.R. Singh, J. Chem. Technol. Biotechnol., 87, 608 (2012); https://doi.org/10.1002/jctb.2752
Q. Liu, R.D. Noble, J.L. Falconer and H.H. Funke, J. Membr. Sci., 117, 163 (1996); https://doi.org/10.1016/0376-7388(96)00058-0
C.B. Rasrendra, B. Girisuta, H.H. van de Bovenkamp, J.G.M. Winkelman, E.J. Leijenhorst, R.H. Venderbosch, M. Windt, D. Meier and H.J. Heeres, Chem. Eng. J., 176, 244 (2011); https://doi.org/10.1016/j.cej.2011.08.082
L. Ahsan, M.S. Jahan and Y. Ni, Ind. Eng. Chem. Res., 52, 9270 (2013); https://doi.org/10.1021/ie401285v
12 M. Henczka and M. Djas, J. Supercrit. Fluids, 110, 154 (2016). https://doi.org/10.1016/j.supflu.2015.11.018
S.K. Ganguly and A.N. Goswami, Sep. Sci. Technol., 31, 1267 (1996); https://doi.org/10.1080/01496399608006950
Ö. Özcan, I. Inci and Y.S. Asçi, J. Chem. Eng. Data, 58, 583 (2013); https://doi.org/10.1021/je301064t
D.J.D. Dina, A.R. Ntieche, J.N. Ndi and M.J. Ketcha, Res. J. Chem. Sci., 2, 42 (2012).
J. Golob, V. Grilc and B. Zadnik, Ind. Eng. Chem. Process Des. Dev., 20, 433 (1981); https://doi.org/10.1021/i200014a004
L. Yu, Q. Guo, J. Hao and W. Jiang, Desalination, 129, 283 (2000); https://doi.org/10.1016/S0011-9164(00)00068-0
K.D. Patil and B.D. Kulkarni, J. Water Pollut. Purif. Res., 1, 13 (2014).
D. Yagyu, T. Ohishi, T. Igarashi, Y. Okumura, T. Nakajo, Y. Mori and S. Kobayashi, Chemosphere, 91, 61 (2013); https://doi.org/10.1016/j.chemosphere.2012.11.078
F.L.D. Cloete and A.P. Marais, Ind. Eng. Chem. Res., 34, 2464 (1995); https://doi.org/10.1021/ie00046a030
R.K. Rajoriya, B. Prasad, I.M. Mishra and K.L. Wasewar, Chem. Biochem. Eng. Q., 21, 219 (2007).
H. Zhang, X. Lan, P. Bai and X. Guo, Chem. Eng. Res. Des., 111, 127 (2016); https://doi.org/10.1016/j.cherd.2016.04.020
G. Daniel, U. Ane and O. And Inmaculada, Ind. Eng. Chem. Res., 44, 977 (2005).
N. Kannan and A. Xavier, Toxicol. Environ. Chem., 79, 95 (2001); https://doi.org/10.1080/02772240109358979
Z. Li, F. Calaza, F. Gao and W.T. Tysoe, Surf. Sci., 601, 1351 (2007); https://doi.org/10.1016/j.susc.2006.12.079
A. Jahanban-Esfahlan, R. Jahanban-Esfahlan, M. Tabibiazar, L. Roufegarinejad and R. Amarowicz, RSC Adv., 10, 7026 (2020); https://doi.org/10.1039/C9RA10084A
H. Wu, W. Sun, H. Wei, Y. Zhao, C. Jin, X. Yang, X. Rong and C. Sun, Water Sci. Technol., 84, 697 (2021); https://doi.org/10.2166/wst.2021.247
L. Jiang, H. Yu, L. Pei and X. Hou, J. Nanomater., 2018, 9167938 (2018); https://doi.org/10.1155/2018/9167938
Y.M. Lee, J.S. Kang, S.Y. Nam and C.H. Choi, Sep. Sci. Technol., 36, 457 (2001); https://doi.org/10.1081/SS-100102938
K. Chen, L. Du, P. Gao, J. Zheng, Y. Liu and H. Lin, Front Chem., 9, 646492 (2021); https://doi.org/10.3389/fchem.2021.646492
K.S. Kulkarni, G.M. Bhogale and R. Nalawade, Korean J. Chem. Eng., 35, 153 (2018); https://doi.org/10.1007/s11814-017-0254-3
L. Donald, Environmental Soil Chemistry, Academic Press, Ed.: 2, p. 133 (2003).
Saruchi and V. Kumar, Arab. J. Chem., 12, 316 (2019); https://doi.org/10.1016/j.arabjc.2016.11.009
N. Tzabar and H.J.M. ter Brake, Adsorption, 22, 901 (2016); https://doi.org/10.1007/s10450-016-9794-9
F.-C. Wu, B.-L. Liu, K.-T. Wu and R.-L. Tseng, Chem. Eng. J., 162, 21 (2010); https://doi.org/10.1016/j.cej.2010.03.006
A.K. Jain, K.V. Gupta, S. Jain and Suhas, Environ. Sci. Technol., 38, 1195 (2004); https://doi.org/10.1021/es034412u
S. Nethaji, A. Sivasamy and A.B. Mandal, Int. J. Environ. Sci. Technol., 10, 231 (2013); https://doi.org/10.1007/s13762-012-0112-0
W. Sun, X. Wang, J. Yang, J. Lu, H. Han, Y. Zhang and J. Wang, J. Membr. Sci., 335, 83 (2009); https://doi.org/10.1016/j.memsci.2009.02.037
A. Pholosi, E.B. Naidoo and A.E. Ofomaja, S. Afr. J. Chem. Eng., 32, 39 (2020); https://doi.org/10.1016/j.sajce.2020.01.005
C.C. de Souza, L.Z.M. de Souza, M. Yilmaz, M.A. de Oliveira, A.C. da Silva Bezerra, E.F. da Silva, M.R. Dumont and A.R.T. Machado, Cleaner Mater., 3, 100052 (2022); https://doi.org/10.1016/j.clema.2022.100052