Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Experimental and Quantum Chemical Studies of Induced Liquid Crystal Textures
Corresponding Author(s) : Ch. Ravi Shankar Kumar
Asian Journal of Chemistry,
Vol. 34 No. 9 (2022): Vol 34 Issue 9
Abstract
Dynamics of molecular structures has its dependence on symmetry, topological defects, responsibility to shear, short range interatomic forces, interplay of thermal and potential energies in formation of supramolecular structures with mesophase. Computational studies emerged as sophisticated tool that deliver the functional aspects responsible in formation of these molecular structures. The article attempts induced textures and phase transition studies of synthesized compound from anilines and aldehydes. Infrared spectral studies infer shits in wavenumbers in formation of secondary aldemines with anilines and aldehydes. Polarizing optical microscope and differential scanning calorimetric studies were performed for observation of textures and confirmation of transition temperatures. Computational studies were performed for these compounds responsible for induced phases using 6-311++(d,p) with quantum mechanical descriptors. Studies revealed that reduced energy gap and high dipole moment is consequence of change in order of transition in synthesized compound responsible for induced phase.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Mohanty, Resonance, 8, 52 (2003); https://doi.org/10.1007/BF02837958
- D. Andrienko, J. Mol. Liq., 267, 520 (2018); https://doi.org/10.1016/j.molliq.2018.01.175
- M. Schadt, Annu. Rev. Mater. Sci., 27, 305 (1997); https://doi.org/10.1146/annurev.matsci.27.1.305
- S. Tantrawong, Mater. Today, 17, 147 (2014); https://doi.org/10.1016/j.mattod.2014.03.001
- M. Castillo-Vallés, A. Martínez-Bueno, R. Giménez, T. Sierra and M.B. Ros, J. Mater. Chem. C Mater. Opt. Electron. Devices, 7, 14454 (2019); https://doi.org/10.1039/C9TC04179F
- J. Uchida, B. Soberats, M. Gupta and T. Kato, Adv. Mater., 34, 2109063 (2022); https://doi.org/10.1002/adma.202109063
- N.A. Razali and Z. Jamain, Polymers, 13, 3462 (2021); https://doi.org/10.3390/polym13203462
- J. Szydlowska, A. Krówczyñski, E. Górecka and D. Pociecha, Soft Matter, 15, 7195 (2019); https://doi.org/10.1039/C9SM01080G
- J. Han, X.-Y. Chang, L.-R. Zhu, Y.-M. Wang, J.-B. Meng, S.-W. Lai and S.S.-Y. Chui, Liq. Cryst., 35, 1379 (2008); https://doi.org/10.1080/02678290802617724
- S.-Y. Fan, H.-T. Xu, Q.-G. Li, D.-M. Fang, W.-H. Yu, S.-K. Xiang, P. Hu, K.-Q. Zhao, C. Feng and B.-Q. Wang, Liq. Cryst., 47, 1041 (2020); https://doi.org/10.1080/02678292.2019.1704898
- S. Umadevi and B.K. Sadashiva, Liq. Cryst., 32, 287 (2005); https://doi.org/10.1080/02678290500031814
- X. Ma and E. Tjhung, Phys. Rev. E, 100, 012701 (2019); https://doi.org/10.1103/PhysRevE.100.012701
- A. Jákli, Liq. Cryst. Rev., 1, 65 (2013); https://doi.org/10.1080/21680396.2013.803701
- J. Matraszek, J. Mieczkowski, J. Szydlowska and E. Gorecka, Liq. Cryst., 27, 429 (2000); https://doi.org/10.1080/026782900202895
- H.F. Gleeson, S. Kaur, V. Görtz, A. Belaissaoui, S. Cowling and J.W. Goodby, ChemPhysChem, 15, 1251 (2014); https://doi.org/10.1002/cphc.201400014
- M. Krasna, M. Cvetko and M. Ambrozic, Beilstein J. Org. Chem., 6, 74 (2010); https://doi.org/10.3762/bjoc.6.74
- N. Kapernaum, F. Knecht, C.S. Hartley, J.C. Roberts, R.P. Lemieux and F. Giesselmann, Beilstein J. Org. Chem., 8, 1118 (2012); https://doi.org/10.3762/bjoc.8.124
- V. Prasad, S.-W. Kang, K.A. Suresh, L. Joshi, Q. Wang and S. Kumar, J. Am. Chem. Soc., 127, 17224 (2005); https://doi.org/10.1021/ja052769n
- M. Mitov, Soft Matter, 13, 4176 (2017); https://doi.org/10.1039/C7SM00384F
- S.K. Sarkar and M.K. Das, Phase Transit., 89, 910 (2016); https://doi.org/10.1080/01411594.2015.1106540
- L. Abdullah Alshabanah, L.A. Al-Mutabagani, H.A. Ahmed and M. Hagar, Molecules, 25, 1694 (2020); https://doi.org/10.3390/molecules25071694
- V.A. Burmistrov, I.V. Novikov, V.V. Aleksandriiskii, M.K. Islyaikin, A.S. Kuznetsova and O.I. Koifman, J. Mol. Liq., 287, 110961 (2019); https://doi.org/10.1016/j.molliq.2019.110961
- K. Kaneko, M. Goto, Y. Haketa, H. Maeda and T. Hanasaki, Chem. Lett., 47, 1180 (2018); https://doi.org/10.1246/cl.180509
- A. Knezeviæ, I. Dokli, M. Sapunar, S. Šegota, U. Baumeister and A. Lesac, Beilstein J. Nanotechnol., 9, 1297 (2018); https://doi.org/10.3762/bjnano.9.122
- S. Sundaram, P. Subhasri, T.R. Rajasekaran, R. Jayaprakasam, T.S. Senthil and V.N. Vijayakumar, Ferroelectrics, 510, 103 (2017); https://doi.org/10.1080/00150193.2017.1328245
- W.-R. Chen, C.-M. Chen, J.-C. Hwang and B.-R. Liaw, Jpn. J. Appl. Phys., 44(5A), 3126 (2005); https://doi.org/10.1143/JJAP.44.3126
- I. Dierking, F. Gieâelmann, P. Zugenmaier, W. Kuczynskit, S.T. Lagerwall and B. Stebler, Liq. Cryst., 13, 45 (1993); https://doi.org/10.1080/02678299308029052
- M. Bagnani, P. Azzari, S. Assenza and R. Mezzenga, Sci. Rep., 9, 12654 (2019); https://doi.org/10.1038/s41598-019-48996-3
- T. Wöhrle, I. Wurzbach, A. Kostidou, N. Kapernaum, J. Litterscheidt, J. Kirres, J.C. Haenle, P. Staffeld, A. Baro, F. Giesselmann and S. Laschat, Chem. Rev., 116, 1139 (2016); https://doi.org/10.1021/acs.chemrev.5b00190
- O. Cienega-Cacerez, C. García-Alcántara, J.A. Moreno-Razo, E. DíazHerrera and E.J. Sambriski. Soft Matter, 12, 1295 (2016); https://doi.org/10.1039/C5SM01959A
- B.-H. Tan, M. Yoshio and T. Kato, Chem. Asian J., 3, 534 (2008); https://doi.org/10.1002/asia.200700225
- R.-T. Wan, S.-J.J. Tsai, G.-H. Lee and C.K. Lai, Dyes Pigments, 173, 107913 (2020); https://doi.org/10.1016/j.dyepig.2019.107913
- S. Sundaram, R. Jayaprakasam, M. Dhandapani, T.S. Senthil and V.N. Vijayakumar, J. Mol. Liq., 243, 14 (2017); https://doi.org/10.1016/j.molliq.2017.08.010
- H.A. Ahmed, M. Hagar and O.A. Alhaddad, Crystals, 9, 133 (2019); https://doi.org/10.3390/cryst9030133
- D. Bhattacharjee, T.K. Devi, R. Dabrowski and A. Bhattacharjee, J. Mol. Liq., 272, 239 (2018); https://doi.org/10.1016/j.molliq.2018.09.052
- M.S. Mahmood, S. Mohd Said, A. Chatterjee, M.F.M. Sabri, A. Mainal, M.N. Daud and N.A. Sairi, Mater. Res. Express, 5, 126306 (2018); https://doi.org/10.1088/2053-1591/aae11d
- D.K. Shukla, V.S. Sharma, V. Prajapat and R.B. Patel, Mol. Cryst. Liq. Cryst., 682, 8 (2019); https://doi.org/10.1080/15421406.2019.1641981
- D. Sharma and S.N. Tiwari, Emerg. Mater. Res., 6, 322 (2017); https://doi.org/10.1680/jemmr.15.00052
- A.K.-T. Mohammad, R.Y. Alwari, H.T. Srinivasa, S.M.H. Al-Majidi and O.I. Alajrawy, Liq. Cryst., 45, 1699 (2018); https://doi.org/10.1080/02678292.2018.1475685
- S. Prasad and D.P. Ojha, Am. J. Mater. Sci., 7, 35 (2017).
- P. Subhasri, R. Jayaprakasam and V.N. Vijayakumar, Int. J. Mod. Phys. B, 32, 1850223 (2018); https://doi.org/10.1142/S0217979218502235
- L.P. Donald, G.L. Lampman, G.S. Kriz and J.R. Vyvyan, Introduction to Spectroscopy, Cengage Learning: Stanford, USA, Ed. 5 (2015).
- R.M. Silverstein, F.X. Webster, D.J. Kiemle and D.L. Bryce, Spectrometric Identification of Organic Compounds, John Wiley & Sons: USA, Ed.: 8 (2007).
- E. Pretsch, P. Buhlmann and M. Badertscher. Structure Determination of Organic Compounds, Springer-Verlag: Berlin Heidelberg, Fourth Revised and Enlarged Edition (2009)
- L.D. Field, S. Sternhell and R. Kalman, Organic Structures from Spectra, John Wiely & Sons: England (2008).
- P. Gill, T.T. Moghadam and B. Ranjbar, J. Biomol. Technol., 21, 167 (2010).
- N.L. Allinger, X. Zhou and J. Bergsma, J. Mol. Struct. THEOCHEM, 312, 69 (1994); https://doi.org/10.1016/S0166-1280(09)80008-0
- W. Andreas, Götz Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics, Chap. 3: Overview of Electronic Structure Methods, John Wiley & Sons Ltd. (2016).
- D.L. Pavia, G.M. Lampman and G.S. Kriz, Introduction to Spectroscopy Brooks/Cole CENGAGE Learning: Washington, USA, pp. 31-84 (2009).
- S. Chakraborty, G. Leitus and D. Milstein, Angew. Chem., 56, 2074 (2017); https://doi.org/10.1002/anie.201608537
- K. Tabei and E. Saitou, Bull. Chem. Soc. Jpn., 42, 1440 (1969); https://doi.org/10.1246/bcsj.42.1440
- S. Shahab, M. Sheikhi, L. Filippovich, D.E. Anatol’evich and H. Yahyaei, J. Mol. Struct., 1137, 335 (2017); https://doi.org/10.1016/j.molstruc.2017.02.056
- J. Spanget-Larsen, Infrared Intensity and Lorentz Epsilon Curvefrom Gaussian FREQ Output, Rosklde University Chemistry (2015).
- J.P. Abberley, R. Killah, R. Walker, J.M.D. Storey, C.T. Imrie, M. Salamoñczyk, C. Zhu, E. Gorecka and D. Pociecha, Nat. Commun., 9, 228 (2018); https://doi.org/10.1038/s41467-017-02626-6
- Y. Yamamura, T. Murakoshi, S. Iwagaki, N. Osiecka, H. Saitoh, M. Hishida, Z. Galewski, M. Massalska-Arodz and K. Saito, Phys. Chem. Chem. Phys., 19, 19434 (2017); https://doi.org/10.1039/C7CP03863A
- N. Osiecka, A. Budziak, Z. Galewski and M. Massalska-Arodz, Phase Transit., 85, 314 (2012); https://doi.org/10.1080/01411594.2011.646268
- P.J. Repasky, D.M. Agra-Kooijman, S. Kumar and C.S. Hartley, J. Phys. Chem. B, 120, 2829 (2016); https://doi.org/10.1021/acs.jpcb.5b10990
- S. Singh, Liquid Crystals Fundamentals, World Scientific Publishing Co. Pvt. Ltd.: Singapore (2002).
- M.A. Qaddoura and K.D. Belfield, Int. J. Mol. Sci., 10, 4772 (2009); https://doi.org/10.3390/ijms10114772
- A.M. Parshin, V.A. Gunyakov, V.Y. Zyryanov and V.F. Shabanov, Int. J. Mol. Sci., 14, 16303 (2013); https://doi.org/10.3390/ijms140816303
- J. Nehring and A. Saupe, J. Chem. Soc., Faraday Trans. II, 68, 1 (1972); https://doi.org/10.1039/F29726800001
- W. Kohn and L.J. Sham, Phys. Rev., 140(4A), A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
- A. Klein and R.M. Dreizler, Phys. Rev. A, 58, 1581 (1998); https://doi.org/10.1103/PhysRevA.58.1581
- V. Balakrishnan and P.M. Andavan, Elixir Vib. Spec., 43, 7044 (2012).
- S. Senthan, S. Srinivasan and S. Kabilan, Mol. Cryst. Liq. Cryst., 609, 249 (2015); https://doi.org/10.1080/15421406.2014.963210
- S. Prasad and D.P. Ojha, Mol. Cryst. Liq. Cryst., 658, 69 (2017); https://doi.org/10.1080/15421406.2017.1415656
- J. Padmanabhan, R. Parthasarathi, V. Subramanian and P.K. Chattaraj, J. Phys. Chem. A, 111, 1358 (2007); https://doi.org/10.1021/jp0649549
- V. Thangavel, B. Venkataraman, S. Prakasan, J. Ramasamy and V.V. Nallagounder, Braz. J. Phys., 50, 39 (2020); https://doi.org/10.1007/s13538-019-00724-y
- P. Upadhyay, M.K. Rastogi and D. Kumar, Chem. Phys., 456, 41 (2015); https://doi.org/10.1016/j.chemphys.2015.03.011
References
S. Mohanty, Resonance, 8, 52 (2003); https://doi.org/10.1007/BF02837958
D. Andrienko, J. Mol. Liq., 267, 520 (2018); https://doi.org/10.1016/j.molliq.2018.01.175
M. Schadt, Annu. Rev. Mater. Sci., 27, 305 (1997); https://doi.org/10.1146/annurev.matsci.27.1.305
S. Tantrawong, Mater. Today, 17, 147 (2014); https://doi.org/10.1016/j.mattod.2014.03.001
M. Castillo-Vallés, A. Martínez-Bueno, R. Giménez, T. Sierra and M.B. Ros, J. Mater. Chem. C Mater. Opt. Electron. Devices, 7, 14454 (2019); https://doi.org/10.1039/C9TC04179F
J. Uchida, B. Soberats, M. Gupta and T. Kato, Adv. Mater., 34, 2109063 (2022); https://doi.org/10.1002/adma.202109063
N.A. Razali and Z. Jamain, Polymers, 13, 3462 (2021); https://doi.org/10.3390/polym13203462
J. Szydlowska, A. Krówczyñski, E. Górecka and D. Pociecha, Soft Matter, 15, 7195 (2019); https://doi.org/10.1039/C9SM01080G
J. Han, X.-Y. Chang, L.-R. Zhu, Y.-M. Wang, J.-B. Meng, S.-W. Lai and S.S.-Y. Chui, Liq. Cryst., 35, 1379 (2008); https://doi.org/10.1080/02678290802617724
S.-Y. Fan, H.-T. Xu, Q.-G. Li, D.-M. Fang, W.-H. Yu, S.-K. Xiang, P. Hu, K.-Q. Zhao, C. Feng and B.-Q. Wang, Liq. Cryst., 47, 1041 (2020); https://doi.org/10.1080/02678292.2019.1704898
S. Umadevi and B.K. Sadashiva, Liq. Cryst., 32, 287 (2005); https://doi.org/10.1080/02678290500031814
X. Ma and E. Tjhung, Phys. Rev. E, 100, 012701 (2019); https://doi.org/10.1103/PhysRevE.100.012701
A. Jákli, Liq. Cryst. Rev., 1, 65 (2013); https://doi.org/10.1080/21680396.2013.803701
J. Matraszek, J. Mieczkowski, J. Szydlowska and E. Gorecka, Liq. Cryst., 27, 429 (2000); https://doi.org/10.1080/026782900202895
H.F. Gleeson, S. Kaur, V. Görtz, A. Belaissaoui, S. Cowling and J.W. Goodby, ChemPhysChem, 15, 1251 (2014); https://doi.org/10.1002/cphc.201400014
M. Krasna, M. Cvetko and M. Ambrozic, Beilstein J. Org. Chem., 6, 74 (2010); https://doi.org/10.3762/bjoc.6.74
N. Kapernaum, F. Knecht, C.S. Hartley, J.C. Roberts, R.P. Lemieux and F. Giesselmann, Beilstein J. Org. Chem., 8, 1118 (2012); https://doi.org/10.3762/bjoc.8.124
V. Prasad, S.-W. Kang, K.A. Suresh, L. Joshi, Q. Wang and S. Kumar, J. Am. Chem. Soc., 127, 17224 (2005); https://doi.org/10.1021/ja052769n
M. Mitov, Soft Matter, 13, 4176 (2017); https://doi.org/10.1039/C7SM00384F
S.K. Sarkar and M.K. Das, Phase Transit., 89, 910 (2016); https://doi.org/10.1080/01411594.2015.1106540
L. Abdullah Alshabanah, L.A. Al-Mutabagani, H.A. Ahmed and M. Hagar, Molecules, 25, 1694 (2020); https://doi.org/10.3390/molecules25071694
V.A. Burmistrov, I.V. Novikov, V.V. Aleksandriiskii, M.K. Islyaikin, A.S. Kuznetsova and O.I. Koifman, J. Mol. Liq., 287, 110961 (2019); https://doi.org/10.1016/j.molliq.2019.110961
K. Kaneko, M. Goto, Y. Haketa, H. Maeda and T. Hanasaki, Chem. Lett., 47, 1180 (2018); https://doi.org/10.1246/cl.180509
A. Knezeviæ, I. Dokli, M. Sapunar, S. Šegota, U. Baumeister and A. Lesac, Beilstein J. Nanotechnol., 9, 1297 (2018); https://doi.org/10.3762/bjnano.9.122
S. Sundaram, P. Subhasri, T.R. Rajasekaran, R. Jayaprakasam, T.S. Senthil and V.N. Vijayakumar, Ferroelectrics, 510, 103 (2017); https://doi.org/10.1080/00150193.2017.1328245
W.-R. Chen, C.-M. Chen, J.-C. Hwang and B.-R. Liaw, Jpn. J. Appl. Phys., 44(5A), 3126 (2005); https://doi.org/10.1143/JJAP.44.3126
I. Dierking, F. Gieâelmann, P. Zugenmaier, W. Kuczynskit, S.T. Lagerwall and B. Stebler, Liq. Cryst., 13, 45 (1993); https://doi.org/10.1080/02678299308029052
M. Bagnani, P. Azzari, S. Assenza and R. Mezzenga, Sci. Rep., 9, 12654 (2019); https://doi.org/10.1038/s41598-019-48996-3
T. Wöhrle, I. Wurzbach, A. Kostidou, N. Kapernaum, J. Litterscheidt, J. Kirres, J.C. Haenle, P. Staffeld, A. Baro, F. Giesselmann and S. Laschat, Chem. Rev., 116, 1139 (2016); https://doi.org/10.1021/acs.chemrev.5b00190
O. Cienega-Cacerez, C. García-Alcántara, J.A. Moreno-Razo, E. DíazHerrera and E.J. Sambriski. Soft Matter, 12, 1295 (2016); https://doi.org/10.1039/C5SM01959A
B.-H. Tan, M. Yoshio and T. Kato, Chem. Asian J., 3, 534 (2008); https://doi.org/10.1002/asia.200700225
R.-T. Wan, S.-J.J. Tsai, G.-H. Lee and C.K. Lai, Dyes Pigments, 173, 107913 (2020); https://doi.org/10.1016/j.dyepig.2019.107913
S. Sundaram, R. Jayaprakasam, M. Dhandapani, T.S. Senthil and V.N. Vijayakumar, J. Mol. Liq., 243, 14 (2017); https://doi.org/10.1016/j.molliq.2017.08.010
H.A. Ahmed, M. Hagar and O.A. Alhaddad, Crystals, 9, 133 (2019); https://doi.org/10.3390/cryst9030133
D. Bhattacharjee, T.K. Devi, R. Dabrowski and A. Bhattacharjee, J. Mol. Liq., 272, 239 (2018); https://doi.org/10.1016/j.molliq.2018.09.052
M.S. Mahmood, S. Mohd Said, A. Chatterjee, M.F.M. Sabri, A. Mainal, M.N. Daud and N.A. Sairi, Mater. Res. Express, 5, 126306 (2018); https://doi.org/10.1088/2053-1591/aae11d
D.K. Shukla, V.S. Sharma, V. Prajapat and R.B. Patel, Mol. Cryst. Liq. Cryst., 682, 8 (2019); https://doi.org/10.1080/15421406.2019.1641981
D. Sharma and S.N. Tiwari, Emerg. Mater. Res., 6, 322 (2017); https://doi.org/10.1680/jemmr.15.00052
A.K.-T. Mohammad, R.Y. Alwari, H.T. Srinivasa, S.M.H. Al-Majidi and O.I. Alajrawy, Liq. Cryst., 45, 1699 (2018); https://doi.org/10.1080/02678292.2018.1475685
S. Prasad and D.P. Ojha, Am. J. Mater. Sci., 7, 35 (2017).
P. Subhasri, R. Jayaprakasam and V.N. Vijayakumar, Int. J. Mod. Phys. B, 32, 1850223 (2018); https://doi.org/10.1142/S0217979218502235
L.P. Donald, G.L. Lampman, G.S. Kriz and J.R. Vyvyan, Introduction to Spectroscopy, Cengage Learning: Stanford, USA, Ed. 5 (2015).
R.M. Silverstein, F.X. Webster, D.J. Kiemle and D.L. Bryce, Spectrometric Identification of Organic Compounds, John Wiley & Sons: USA, Ed.: 8 (2007).
E. Pretsch, P. Buhlmann and M. Badertscher. Structure Determination of Organic Compounds, Springer-Verlag: Berlin Heidelberg, Fourth Revised and Enlarged Edition (2009)
L.D. Field, S. Sternhell and R. Kalman, Organic Structures from Spectra, John Wiely & Sons: England (2008).
P. Gill, T.T. Moghadam and B. Ranjbar, J. Biomol. Technol., 21, 167 (2010).
N.L. Allinger, X. Zhou and J. Bergsma, J. Mol. Struct. THEOCHEM, 312, 69 (1994); https://doi.org/10.1016/S0166-1280(09)80008-0
W. Andreas, Götz Electronic Structure Calculations on Graphics Processing Units: From Quantum Chemistry to Condensed Matter Physics, Chap. 3: Overview of Electronic Structure Methods, John Wiley & Sons Ltd. (2016).
D.L. Pavia, G.M. Lampman and G.S. Kriz, Introduction to Spectroscopy Brooks/Cole CENGAGE Learning: Washington, USA, pp. 31-84 (2009).
S. Chakraborty, G. Leitus and D. Milstein, Angew. Chem., 56, 2074 (2017); https://doi.org/10.1002/anie.201608537
K. Tabei and E. Saitou, Bull. Chem. Soc. Jpn., 42, 1440 (1969); https://doi.org/10.1246/bcsj.42.1440
S. Shahab, M. Sheikhi, L. Filippovich, D.E. Anatol’evich and H. Yahyaei, J. Mol. Struct., 1137, 335 (2017); https://doi.org/10.1016/j.molstruc.2017.02.056
J. Spanget-Larsen, Infrared Intensity and Lorentz Epsilon Curvefrom Gaussian FREQ Output, Rosklde University Chemistry (2015).
J.P. Abberley, R. Killah, R. Walker, J.M.D. Storey, C.T. Imrie, M. Salamoñczyk, C. Zhu, E. Gorecka and D. Pociecha, Nat. Commun., 9, 228 (2018); https://doi.org/10.1038/s41467-017-02626-6
Y. Yamamura, T. Murakoshi, S. Iwagaki, N. Osiecka, H. Saitoh, M. Hishida, Z. Galewski, M. Massalska-Arodz and K. Saito, Phys. Chem. Chem. Phys., 19, 19434 (2017); https://doi.org/10.1039/C7CP03863A
N. Osiecka, A. Budziak, Z. Galewski and M. Massalska-Arodz, Phase Transit., 85, 314 (2012); https://doi.org/10.1080/01411594.2011.646268
P.J. Repasky, D.M. Agra-Kooijman, S. Kumar and C.S. Hartley, J. Phys. Chem. B, 120, 2829 (2016); https://doi.org/10.1021/acs.jpcb.5b10990
S. Singh, Liquid Crystals Fundamentals, World Scientific Publishing Co. Pvt. Ltd.: Singapore (2002).
M.A. Qaddoura and K.D. Belfield, Int. J. Mol. Sci., 10, 4772 (2009); https://doi.org/10.3390/ijms10114772
A.M. Parshin, V.A. Gunyakov, V.Y. Zyryanov and V.F. Shabanov, Int. J. Mol. Sci., 14, 16303 (2013); https://doi.org/10.3390/ijms140816303
J. Nehring and A. Saupe, J. Chem. Soc., Faraday Trans. II, 68, 1 (1972); https://doi.org/10.1039/F29726800001
W. Kohn and L.J. Sham, Phys. Rev., 140(4A), A1133 (1965); https://doi.org/10.1103/PhysRev.140.A1133
A. Klein and R.M. Dreizler, Phys. Rev. A, 58, 1581 (1998); https://doi.org/10.1103/PhysRevA.58.1581
V. Balakrishnan and P.M. Andavan, Elixir Vib. Spec., 43, 7044 (2012).
S. Senthan, S. Srinivasan and S. Kabilan, Mol. Cryst. Liq. Cryst., 609, 249 (2015); https://doi.org/10.1080/15421406.2014.963210
S. Prasad and D.P. Ojha, Mol. Cryst. Liq. Cryst., 658, 69 (2017); https://doi.org/10.1080/15421406.2017.1415656
J. Padmanabhan, R. Parthasarathi, V. Subramanian and P.K. Chattaraj, J. Phys. Chem. A, 111, 1358 (2007); https://doi.org/10.1021/jp0649549
V. Thangavel, B. Venkataraman, S. Prakasan, J. Ramasamy and V.V. Nallagounder, Braz. J. Phys., 50, 39 (2020); https://doi.org/10.1007/s13538-019-00724-y
P. Upadhyay, M.K. Rastogi and D. Kumar, Chem. Phys., 456, 41 (2015); https://doi.org/10.1016/j.chemphys.2015.03.011