Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Wild Edible Plants: Antioxidant Activities in Different Solvents and Quantification of Phenolic Compounds by HPLC
Corresponding Author(s) : Tapan Seal
Asian Journal of Chemistry,
Vol. 34 No. 8 (2022): Vol 34 Issue 8, 2022
Abstract
Wild edible plants (WEPs) are rich in antioxidants and diverse sections of the plant had been notably utilized as conventional and folklore medicine to cure various human ailments. This study was designed to evaluate the most effective solvent for extracting polyphenols from medicinally important WEPs which includes Coix lacryma-jobi, Herpetospermum pedunculosum, Plukenetia corniculata, Sonchus asper and Streptolirion volubile, which allows to offer medical guide for conventional use of the plant. Individual phenolic component concentrations were determined using RP-HPLC and total phenolic, total flavonoid and total flavonol were quantified using four different solvents. Aqueous ethanol (80%) is most effective solvent for polyphenol extraction amongst solvents of diverse polarities. The studied plants were found to be rich in total phenolics, flavonols, especially gallic acid (1.12 ± 0.33 μg/mg dry extract) and ferulic acid (4.03 ± 0.53 μg/mg dry extract) in the 80% aq. ethanol extract of H. pedunculosum. The correlation analyses of each solvent found out sturdy to susceptible connections amongst all examined parameters, with the best values (r and R2) in 80% aq. ethanol and chloroform, indicating that those solvents have an excessive ability for polyphenol extraction and antioxidant activity. The Principal component analysis revealed that based on the phenolics and polyphenolics content, the 80% aq. ethanol extract of H. pedunculosum was shown to be more potent than the other plants under investigation. Present findings display that aqueous ethanol extracts of the studied plants have better antioxidant activities than synthetic derivatives, indicating their prospective usefulness and ability to replace synthetic derivatives in consumable and medical products.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B.L. Tan, M.E. Norhaizan, W.P.P. Liew and R.H. Sulaiman, Front. Pharmacol., 9, 1162 (2018); https://doi.org/10.3389/fphar.2018.01162
- J.H. McDermott, J. Am. Pharm. Assoc., 40, 785 (2000); https://doi.org/10.1016/S1086-5802(16)31126-3
- F. Aqil, I. Ahmed and Z. Mehmood, Turk. J. Biol., 30, 177 (2006).
- X. Liu, M. Dong, X. Chen, M. Jiang, X. Lv and G. Yan, Food Chem., 105, 548 (2007); https://doi.org/10.1016/j.foodchem.2007.04.008
- E.A. Hayouni, M. Abedrabba, M. Bouix and M. Hamdi, Food Chem., 105, 1126 (2007); https://doi.org/10.1016/j.foodchem.2007.02.010
- A. Buhmann and J. Papenbrock, Funct. Plant Biol., 40, 952 (2013); https://doi.org/10.1071/FP12342
- V.L. Singleton and J.A. Rossi, Am. J. Enol. Vitic., 16, 144 (1965).
- A. Ordonez, J. Gomez, M. Vattuone and M. Lsla, Food Chem., 97, 452 (2006); https://doi.org/10.1016/j.foodchem.2005.05.024
- A. Kumaran and R.J. Karunakaran, Food Chem., 97, 109 (2006); https://doi.org/10.1016/j.foodchem.2005.03.032
- M. Oyaizu, Jpn. J. Nutr., 44, 307 (1986); https://doi.org/10.5264/eiyogakuzashi.44.307
- M.S. Blois, Nature, 181, 1199 (1958); https://doi.org/10.1038/1811199a0
- R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. RiceEvans, Free Radic. Biol. Med., 26, 1231 (1999); https://doi.org/10.1016/S0891-5849(98)00315-3
- S.C. Lin, C.M.J. Chang and T.S. Deng, J. Taiwan Inst. Chem. Eng., 40, 136 (2009); https://doi.org/10.1016/j.jtice.2008.09.005
- T.G. Amabye, Nat. Prod. Chem. Res., 4, 199 (2016); https://doi.org/10.4172/2329-6836.1000199
- S. Datta, B.K. Sinha, S. Bhattacharjee and T. Seal, Heliyon, 5, e01431 (2019); https://doi.org/10.1016/j.heliyon.2019.e01431
- T. Seal and K. Chaudhuri, J. Chem. Pharm. Res., 7, 427 (2015).
- K.S. Jamuna, C.K. Ramesh, T.R. Srinivasa and K.I. Raghu, Int. J. Pharm. Pharm. Sci., 3, 60 (2011).
- Y.S. Velioglu, G. Mazza, L. Gao and B.D. Oomah, J. Agric. Food Chem., 46, 4113 (1998); https://doi.org/10.1021/jf9801973
- N. Loganayaki, P. Siddhuraju and S. Manian, J. Food Sci. Technol., 50, 687 (2013); https://doi.org/10.1007/s13197-011-0389-x
- G.B. Romaric, A.L. Fatoumata, H.K. Oumou, D. Mamounata, H.N.B. Imael and H.D. Mamoudou, Afr. J. Biotechnol., 10, 13543 (2011); https://doi.org/10.5897/AJB10.2010
- M. Colon and C. Nerin, J. Agric. Food Chem., 60, 9842 (2012); https://doi.org/10.1021/jf302477y
- A. Tverdal and S. Skurtveit, Ann. Epidemiol., 13, 419 (2003); https://doi.org/10.1016/S1047-2797(02)00462-3
- S.J. Kim, M.C. Kim, J.Y. Um and S.H. Hong, Molecules, 15, 7208 (2010); https://doi.org/10.3390/molecules15107208
- H. Schmidtlein and K. Herrmann, Z. Lebensm. Unters. Forsch., 159, 255 (1975); https://doi.org/10.1007/BF01139577
- R. Vinayagam, Int. J. Pharm. Biol. Arch., 1, 393 (2010).
- G. Mussatto, I. Dragone and C. Roberto, Ind. Crops Prod., 25, 231 (2007); https://doi.org/10.1016/j.indcrop.2006.11.001
- L. Sepulveda, A. Ascacio, A.R. Rodríguez-Herrera, A. Aguilera-Carbo and N. Aguilar Cristobal, Afr. J. Biotechnol., 10, 4518 (2011).
- N. Razali, S. Mat-Junit, A.F. Abdul-Muthalib, S. Subramaniam and A. Abdul-Aziz, Food Chem., 131, 441 (2012); https://doi.org/10.1016/j.foodchem.2011.09.001
- C. Fredes, G. Montenegro, J.P. Zoffoli, F. Santander and P. Robert, Cienc. Investig. Agrar., 41, 9 (2014); https://doi.org/10.4067/S0718-16202014000100005
- D. Ramful, E. Tarnus, O.I. Aruoma, E. Bourdon and T. Bahorun, Food Res. Int., 44, 2088 (2011); https://doi.org/10.1016/j.foodres.2011.03.056
References
B.L. Tan, M.E. Norhaizan, W.P.P. Liew and R.H. Sulaiman, Front. Pharmacol., 9, 1162 (2018); https://doi.org/10.3389/fphar.2018.01162
J.H. McDermott, J. Am. Pharm. Assoc., 40, 785 (2000); https://doi.org/10.1016/S1086-5802(16)31126-3
F. Aqil, I. Ahmed and Z. Mehmood, Turk. J. Biol., 30, 177 (2006).
X. Liu, M. Dong, X. Chen, M. Jiang, X. Lv and G. Yan, Food Chem., 105, 548 (2007); https://doi.org/10.1016/j.foodchem.2007.04.008
E.A. Hayouni, M. Abedrabba, M. Bouix and M. Hamdi, Food Chem., 105, 1126 (2007); https://doi.org/10.1016/j.foodchem.2007.02.010
A. Buhmann and J. Papenbrock, Funct. Plant Biol., 40, 952 (2013); https://doi.org/10.1071/FP12342
V.L. Singleton and J.A. Rossi, Am. J. Enol. Vitic., 16, 144 (1965).
A. Ordonez, J. Gomez, M. Vattuone and M. Lsla, Food Chem., 97, 452 (2006); https://doi.org/10.1016/j.foodchem.2005.05.024
A. Kumaran and R.J. Karunakaran, Food Chem., 97, 109 (2006); https://doi.org/10.1016/j.foodchem.2005.03.032
M. Oyaizu, Jpn. J. Nutr., 44, 307 (1986); https://doi.org/10.5264/eiyogakuzashi.44.307
M.S. Blois, Nature, 181, 1199 (1958); https://doi.org/10.1038/1811199a0
R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang and C. RiceEvans, Free Radic. Biol. Med., 26, 1231 (1999); https://doi.org/10.1016/S0891-5849(98)00315-3
S.C. Lin, C.M.J. Chang and T.S. Deng, J. Taiwan Inst. Chem. Eng., 40, 136 (2009); https://doi.org/10.1016/j.jtice.2008.09.005
T.G. Amabye, Nat. Prod. Chem. Res., 4, 199 (2016); https://doi.org/10.4172/2329-6836.1000199
S. Datta, B.K. Sinha, S. Bhattacharjee and T. Seal, Heliyon, 5, e01431 (2019); https://doi.org/10.1016/j.heliyon.2019.e01431
T. Seal and K. Chaudhuri, J. Chem. Pharm. Res., 7, 427 (2015).
K.S. Jamuna, C.K. Ramesh, T.R. Srinivasa and K.I. Raghu, Int. J. Pharm. Pharm. Sci., 3, 60 (2011).
Y.S. Velioglu, G. Mazza, L. Gao and B.D. Oomah, J. Agric. Food Chem., 46, 4113 (1998); https://doi.org/10.1021/jf9801973
N. Loganayaki, P. Siddhuraju and S. Manian, J. Food Sci. Technol., 50, 687 (2013); https://doi.org/10.1007/s13197-011-0389-x
G.B. Romaric, A.L. Fatoumata, H.K. Oumou, D. Mamounata, H.N.B. Imael and H.D. Mamoudou, Afr. J. Biotechnol., 10, 13543 (2011); https://doi.org/10.5897/AJB10.2010
M. Colon and C. Nerin, J. Agric. Food Chem., 60, 9842 (2012); https://doi.org/10.1021/jf302477y
A. Tverdal and S. Skurtveit, Ann. Epidemiol., 13, 419 (2003); https://doi.org/10.1016/S1047-2797(02)00462-3
S.J. Kim, M.C. Kim, J.Y. Um and S.H. Hong, Molecules, 15, 7208 (2010); https://doi.org/10.3390/molecules15107208
H. Schmidtlein and K. Herrmann, Z. Lebensm. Unters. Forsch., 159, 255 (1975); https://doi.org/10.1007/BF01139577
R. Vinayagam, Int. J. Pharm. Biol. Arch., 1, 393 (2010).
G. Mussatto, I. Dragone and C. Roberto, Ind. Crops Prod., 25, 231 (2007); https://doi.org/10.1016/j.indcrop.2006.11.001
L. Sepulveda, A. Ascacio, A.R. Rodríguez-Herrera, A. Aguilera-Carbo and N. Aguilar Cristobal, Afr. J. Biotechnol., 10, 4518 (2011).
N. Razali, S. Mat-Junit, A.F. Abdul-Muthalib, S. Subramaniam and A. Abdul-Aziz, Food Chem., 131, 441 (2012); https://doi.org/10.1016/j.foodchem.2011.09.001
C. Fredes, G. Montenegro, J.P. Zoffoli, F. Santander and P. Robert, Cienc. Investig. Agrar., 41, 9 (2014); https://doi.org/10.4067/S0718-16202014000100005
D. Ramful, E. Tarnus, O.I. Aruoma, E. Bourdon and T. Bahorun, Food Res. Int., 44, 2088 (2011); https://doi.org/10.1016/j.foodres.2011.03.056