Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Green-Synthesis, Characterization and the Biological Evolution of ZnSnO3
Corresponding Author(s) : Y.V. Bhaskaralakshmi
Asian Journal of Chemistry,
Vol. 34 No. 8 (2022): Vol 34 Issue 8, 2022
Abstract
Nanostructured zinc stannate binary semiconducting metal nanoparticles are having considerable attention owing to their special and unique properties rendering them suitable for a wide range of variety applications. In the quest to further improve the physico-chemical properties, an interest in ternary complex oxides has become noticeable in recent times. Zinc stannate nanoparticles or zinc tin oxide (ZTO) is a class of ternary oxides, which are known for their stable properties under extreme conditions, higher electron conductivity and mobility compared to its binary counterparts and other interesting optical properties. Among the different methods of synthesizing ZTO nanostructures, the autoclave method is an attractive green technique, which is carried out at low temperatures. In this work, we summarized the conditions leading to the growth of ZTO nanostructures using the hydrothermal method, evaluated few of its antimicrobial applications and compared with reported literature.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. An, Ch. Jin, H. Kim, S. Lee, B. Jeong and Ch. Lee, NANO: Brief Reports and Reviews, 7, 1250013 (2012); https://doi.org/10.1142/S1793292012500130
- I. Stambolova, K. Konstantinov, D. Kovacheva, P. Peshev and T. Donchev, J. Solid State Chem., 128, 305 (1997); https://doi.org/10.1006/jssc.1996.7174
- N. Nikolic, T. Sreckovic and M.M. Ristic, J. Eur. Ceram. Soc., 21, 2071 (2001); https://doi.org/10.1016/S0955-2219(01)00174-1
- T.J. Coutts, D.L. Young, X. Li, W.P. Mulligan and X. Wu, J. Vac. Sci. Technol., 18, 2646 (2000); https://doi.org/10.1116/1.1290371
- J. Jie, G. Wang, X. Han, J. Fang, Q. Yu, Y. Liao, B. Xu, Q. Wang and J.G. Hou, J. Phys. Chem. B, 108, 8249 (2004); https://doi.org/10.1021/jp049230g
- B. Geng, C. Fang, F. Zhan and N. Yu, Small, 4, 1337 (2008); https://doi.org/10.1002/smll.200701177
- J.Q. Xu, X.H. Jia, X.D. Lou, G.X. Xi, J.J. Han and Q.H. Gao, Sens. Actuators B Chem., 120, 694 (2007); https://doi.org/10.1016/j.snb.2006.03.033
- P. Prabhakaran, M.V.A. Raj, J.J. Mathen, S. Pratap and J. Madhavan Eds.: J. Ebenezar, Hollow ZnSnO3 Crystallites: Structural, Electrical and Optical Properties, In: Recent Trends in Materials Science and Applications. Springer Proceedings in Physics, Springer, Cham., vol. 189 (2017).
- X.Y. Xue, Y.J. Chen, Y.G. Liu, S.L. Shi, Y.G. Wang and T.H. Wang, Appl. Phys. Lett., 88, 201907 (2006); https://doi.org/10.1063/1.2203941
- G. Sun, S. Zhang and Y. Li, Int. J. Photoenergy, 2014, 580615 (2014); https://doi.org/10.1155/2014/580615
- J.B. Shi, P.F. Wu, H.S. Lin, Y.T. Lin, H.W. Lee, C.T. Kao, W.H. Liao and S.L. Young, Nanoscale Res. Lett., 9, 210 (2014); https://doi.org/10.1186/1556-276X-9-210
- Y. Zhao, L. Hu, H. Liu, M. Liao, X. Fang and L. Wu, Sci. Rep., 4, 6847 (2015); https://doi.org/10.1038/srep06847
- X. Lou, X. Jia, J. Xu, S. Liu and Q. Gao, Mater. Sci. Eng. A, 432, 221 (2006); https://doi.org/10.1016/j.msea.2006.06.010
- E.L. Foletto, J.M. Simões, M.A. Mazutti, S.L. Jahn, E.I. Muller, L.S.F. Pereira and E.M.M. Flores, Ceram. Int., 39, 4569 (2013); https://doi.org/10.1016/j.ceramint.2012.11.053
- Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen and M. Li, J. Nanomater., 2020, 8917013 (2020); https://doi.org/10.1155/2020/8917013
- V. Šepelák, S.M. Becker, I. Bergmann, S. Indris, M. Scheuermann, A. Feldhoff, C. Kübel, M. Bruns, N. Stürzl, A.S. Ulrich, M. Ghafari, H. Hahn, C.P. Grey, K.D. Becker and P. Heitjans, J. Mater. Chem., 22, 3117 (2012); https://doi.org/10.1039/c2jm15427g
- W.W. Wang, Y.J. Zhu and L.X. Yang, Adv. Funct. Mater., 17, 59 (2007); https://doi.org/10.1002/adfm.200600431
- M. Miyauchi, Z. Liu, Z.-G. Zhao, S. Anandan and K. Hara, Chem. Commun., 46, 1529 (2010); https://doi.org/10.1039/b921010e
- Y. Zeng, T. Zhang, H. Fan, W. Fu, G. Lu, Y. Sui and H. Yang, J. Phys. Chem. C, 113, 19000 (2009); https://doi.org/10.1021/jp905230h
- J. Huang, X. Xu, C. Gu, W. Wang, B. Geng, Y. Sun and J. Liu, Sens. Actuators B Chem., 171-172, 572 (2012); https://doi.org/10.1016/j.snb.2012.05.036
- F. Wang, Z. Shi, F. Gong, J.T. Jiu and M. Adachi, Chin. J. Chem. Eng., 15, 754 (2007); https://doi.org/10.1016/S1004-9541(07)60158-X
- Y.S. Zhou and W.G. Jiang, Chin. J. Chem. Eng., 10, 349 (2002).
- Q.C. Ling, J.Z. Sun and Q.Y. Zhou, Appl. Surf. Sci., 254, 3236 (2008); https://doi.org/10.1016/j.apsusc.2007.11.001
- S.-H. Choi, D. Hwang, D.-Y. Kim, Y. Kervella, P. Maldivi, S.-Y. Jang, R. Demadrille and I.-D. Kim, Adv. Funct. Mater., 23, 3146 (2013); https://doi.org/10.1002/adfm.201203278
- R. Somasekhar and D.S. Paul, Res. J. Chem. Environ., 10, 80 (2021); https://doi.org/10.25303/2510rjce8083
- B. Koneru, Y. Shi, Y.-C. Wang, S. Chavala, M. Miller, B. Holbert, M. Conson, A. Ni and A. Di Pasqua, Molecules, 20, 19690 (2015); https://doi.org/10.3390/molecules201119650
- Z. Chen, M. Cao and C. Hu, J. Phys. Chem. C, 115, 5522 (2011); https://doi.org/10.1021/jp111785t
- P.M. Aneesh, K.A. Vanaja and M.K. Jayaraj, Nanophoton. Mater. IV, 6639, 66390J (2007); https://doi.org/10.1117/12.730364
- P.K. Stoimenov, R.L. Klinger, G.L. Marchin and K.J. Klabunde, Langmuir, 18, 6679 (2002); https://doi.org/10.1021/la0202374
- C. Fernández-Mazarrasa, O. Mazarrasa, J. Calvo, A. del Arco and L. Martínez-Martínez, J. Clin. Microbiol., 47, 827 (2009); https://doi.org/10.1128/JCM.02464-08
- O. Akgul and N. Cerikcioglu, Mycopathologia, 167, 357 (2009).
- B. Ayesha, U. Jabeen, A. Naeem, P. Kasi, M.N.K. Malghani, S.U. Khan, J. Akhtar and M. Aamir, Results Chem., 2, 100023 (2020); https://doi.org/10.1016/j.rechem.2020.100023
References
S. An, Ch. Jin, H. Kim, S. Lee, B. Jeong and Ch. Lee, NANO: Brief Reports and Reviews, 7, 1250013 (2012); https://doi.org/10.1142/S1793292012500130
I. Stambolova, K. Konstantinov, D. Kovacheva, P. Peshev and T. Donchev, J. Solid State Chem., 128, 305 (1997); https://doi.org/10.1006/jssc.1996.7174
N. Nikolic, T. Sreckovic and M.M. Ristic, J. Eur. Ceram. Soc., 21, 2071 (2001); https://doi.org/10.1016/S0955-2219(01)00174-1
T.J. Coutts, D.L. Young, X. Li, W.P. Mulligan and X. Wu, J. Vac. Sci. Technol., 18, 2646 (2000); https://doi.org/10.1116/1.1290371
J. Jie, G. Wang, X. Han, J. Fang, Q. Yu, Y. Liao, B. Xu, Q. Wang and J.G. Hou, J. Phys. Chem. B, 108, 8249 (2004); https://doi.org/10.1021/jp049230g
B. Geng, C. Fang, F. Zhan and N. Yu, Small, 4, 1337 (2008); https://doi.org/10.1002/smll.200701177
J.Q. Xu, X.H. Jia, X.D. Lou, G.X. Xi, J.J. Han and Q.H. Gao, Sens. Actuators B Chem., 120, 694 (2007); https://doi.org/10.1016/j.snb.2006.03.033
P. Prabhakaran, M.V.A. Raj, J.J. Mathen, S. Pratap and J. Madhavan Eds.: J. Ebenezar, Hollow ZnSnO3 Crystallites: Structural, Electrical and Optical Properties, In: Recent Trends in Materials Science and Applications. Springer Proceedings in Physics, Springer, Cham., vol. 189 (2017).
X.Y. Xue, Y.J. Chen, Y.G. Liu, S.L. Shi, Y.G. Wang and T.H. Wang, Appl. Phys. Lett., 88, 201907 (2006); https://doi.org/10.1063/1.2203941
G. Sun, S. Zhang and Y. Li, Int. J. Photoenergy, 2014, 580615 (2014); https://doi.org/10.1155/2014/580615
J.B. Shi, P.F. Wu, H.S. Lin, Y.T. Lin, H.W. Lee, C.T. Kao, W.H. Liao and S.L. Young, Nanoscale Res. Lett., 9, 210 (2014); https://doi.org/10.1186/1556-276X-9-210
Y. Zhao, L. Hu, H. Liu, M. Liao, X. Fang and L. Wu, Sci. Rep., 4, 6847 (2015); https://doi.org/10.1038/srep06847
X. Lou, X. Jia, J. Xu, S. Liu and Q. Gao, Mater. Sci. Eng. A, 432, 221 (2006); https://doi.org/10.1016/j.msea.2006.06.010
E.L. Foletto, J.M. Simões, M.A. Mazutti, S.L. Jahn, E.I. Muller, L.S.F. Pereira and E.M.M. Flores, Ceram. Int., 39, 4569 (2013); https://doi.org/10.1016/j.ceramint.2012.11.053
Y.X. Gan, A.H. Jayatissa, Z. Yu, X. Chen and M. Li, J. Nanomater., 2020, 8917013 (2020); https://doi.org/10.1155/2020/8917013
V. Šepelák, S.M. Becker, I. Bergmann, S. Indris, M. Scheuermann, A. Feldhoff, C. Kübel, M. Bruns, N. Stürzl, A.S. Ulrich, M. Ghafari, H. Hahn, C.P. Grey, K.D. Becker and P. Heitjans, J. Mater. Chem., 22, 3117 (2012); https://doi.org/10.1039/c2jm15427g
W.W. Wang, Y.J. Zhu and L.X. Yang, Adv. Funct. Mater., 17, 59 (2007); https://doi.org/10.1002/adfm.200600431
M. Miyauchi, Z. Liu, Z.-G. Zhao, S. Anandan and K. Hara, Chem. Commun., 46, 1529 (2010); https://doi.org/10.1039/b921010e
Y. Zeng, T. Zhang, H. Fan, W. Fu, G. Lu, Y. Sui and H. Yang, J. Phys. Chem. C, 113, 19000 (2009); https://doi.org/10.1021/jp905230h
J. Huang, X. Xu, C. Gu, W. Wang, B. Geng, Y. Sun and J. Liu, Sens. Actuators B Chem., 171-172, 572 (2012); https://doi.org/10.1016/j.snb.2012.05.036
F. Wang, Z. Shi, F. Gong, J.T. Jiu and M. Adachi, Chin. J. Chem. Eng., 15, 754 (2007); https://doi.org/10.1016/S1004-9541(07)60158-X
Y.S. Zhou and W.G. Jiang, Chin. J. Chem. Eng., 10, 349 (2002).
Q.C. Ling, J.Z. Sun and Q.Y. Zhou, Appl. Surf. Sci., 254, 3236 (2008); https://doi.org/10.1016/j.apsusc.2007.11.001
S.-H. Choi, D. Hwang, D.-Y. Kim, Y. Kervella, P. Maldivi, S.-Y. Jang, R. Demadrille and I.-D. Kim, Adv. Funct. Mater., 23, 3146 (2013); https://doi.org/10.1002/adfm.201203278
R. Somasekhar and D.S. Paul, Res. J. Chem. Environ., 10, 80 (2021); https://doi.org/10.25303/2510rjce8083
B. Koneru, Y. Shi, Y.-C. Wang, S. Chavala, M. Miller, B. Holbert, M. Conson, A. Ni and A. Di Pasqua, Molecules, 20, 19690 (2015); https://doi.org/10.3390/molecules201119650
Z. Chen, M. Cao and C. Hu, J. Phys. Chem. C, 115, 5522 (2011); https://doi.org/10.1021/jp111785t
P.M. Aneesh, K.A. Vanaja and M.K. Jayaraj, Nanophoton. Mater. IV, 6639, 66390J (2007); https://doi.org/10.1117/12.730364
P.K. Stoimenov, R.L. Klinger, G.L. Marchin and K.J. Klabunde, Langmuir, 18, 6679 (2002); https://doi.org/10.1021/la0202374
C. Fernández-Mazarrasa, O. Mazarrasa, J. Calvo, A. del Arco and L. Martínez-Martínez, J. Clin. Microbiol., 47, 827 (2009); https://doi.org/10.1128/JCM.02464-08
O. Akgul and N. Cerikcioglu, Mycopathologia, 167, 357 (2009).
B. Ayesha, U. Jabeen, A. Naeem, P. Kasi, M.N.K. Malghani, S.U. Khan, J. Akhtar and M. Aamir, Results Chem., 2, 100023 (2020); https://doi.org/10.1016/j.rechem.2020.100023