Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Recent Advances Review on Iron Complexes as Catalyst in Oxidation Reactions of Organic Compounds
Corresponding Author(s) : E. Thamarai Selvi
Asian Journal of Chemistry,
Vol. 34 No. 8 (2022): Vol 34 Issue 8, 2022
Abstract
The complexes of iron are found to be too reactive and are too diverse in their reactivity, when compared to the other neighbouring metals in the group. Iron complexes are used in various catalytic reactions such as oxygenation of C–H bonds, the oxidation of alcohols to aldehydes, ketones (or) carboxylic acids, the epoxidation or dihydroxylation of alkenes and oxidative coupling reactions. Efforts are taken to avoid certain disadvantages taking place during enzymatic catalysis such as the temperature and solvent sensitivity, narrow substrate scope, restricted accessibility and so on observed while using other catalysts via iron enzymes. This helped in the various synthesis of complex molecules by increase in the number of iron catalyst systems for the oxidation reactions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Suzuki, Angew. Chem. Int. Ed., 50, 6722 (2011); https://doi.org/10.1002/anie.201101379
- E. Negishi, Angew. Chem. Int. Ed., 50, 6738 (2011); https://doi.org/10.1002/anie.201101380
- C.C.C.J. Seechurn, M.O. Kitching, T.J. Colacot and V. Snieckus, Angew. Chem. Int. Ed., 51, 5062 (2012); https://doi.org/10.1002/anie.201107017
- A. Biffis, P. Centomo, A. Del Zotto and M. Zecca, Chem. Rev., 118, 2249 (2018); https://doi.org/10.1021/acs.chemrev.7b00443
- F. Christoffel and T.R. Ward, Catal. Lett., 148, 489 (2018); https://doi.org/10.1007/s10562-017-2285-0
- D. Roy and Y. Uozumi, Adv. Synth. Catal., 360, 602 (2018); https://doi.org/10.1002/adsc.201700810
- P. Ruiz-Castillo and S.L. Buchwald, Chem. Rev., 116, 12564 (2016); https://doi.org/10.1021/acs.chemrev.6b00512
- F. Kallmeier and R. Kempe, Angew. Chem. Int. Ed., 57, 46 (2018); https://doi.org/10.1002/anie.201709010
- A. Rosas-Hernandez, C. Steinlechner, H. Junge and M. Beller, Top. Curr. Chem., 376, 1 (2018); https://doi.org/10.1007/s41061-017-0179-7
- P.T. Wolczanski, Organometallics, 37, 505 (2018); https://doi.org/10.1021/acs.organomet.7b00753
- N. Rajesh, N. Barsu and B. Sundararaju, Tetrahedron Lett., 59, 862 (2018); https://doi.org/10.1016/j.tetlet.2018.01.065
- D. Wei and C. Darcel, Chem. Rev., 119, 2550 (2019); https://doi.org/10.1021/acs.chemrev.8b00372
- E.B. Bauer, Isr. J. Chem., 57, 1131 (2017); https://doi.org/10.1002/ijch.201700050
- A. Correa, O.G. Mancheño and C. Bolm, Chem. Soc. Rev., 37, 1108 (2008); https://doi.org/10.1039/B801794H
- S. Dadashi-Silab and K. Matyjaszewski, ACS Macro Lett., 8, 1110 (2019); https://doi.org/10.1021/acsmacrolett.9b00579
- P.I. Dalko and L. Moisan, Angew. Chem. Int. Ed., 43, 5138 (2004); https://doi.org/10.1002/anie.200400650.
- W. Huang, W.-H. Xu, W.H.E. Schwarz and J. Li, Inorg. Chem., 55, 4616 (2016); https://doi.org/10.1021/acs.inorgchem.6b00442
- J.-B. Lu, J. Jian, W. Huang, H. Lin, J. Li and M. Zhou, Phys. Chem. Chem. Phys., 18, 31125 (2016); https://doi.org/10.1039/C6CP06753K
- W.M. Reiff and G.J. Long, Mössbauer Spectroscopy Applied to Inorganic Chemistry, In: Mössbauer Spectroscopy and the Coordination Chemistry of Iron, Springer, pp. 245-283 (1984).
- S.K. Ghorai, V.G. Gopalsamuthiram, A.M. Jawalekar, R.E. Patre and S. Pal, Tetrahedron, 73, 1769 (2017); https://doi.org/10.1016/j.tet.2017.02.033
- P. Chirik, Angew. Chem. Int. Ed., 56, 5170 (2017); https://doi.org/10.1002/anie.201611959
- N. Yoshikai and E. Nakamura, Chem. Rev., 112, 2339 (2012); https://doi.org/10.1021/cr200241f
- I. Bauer and H.-J. Knölker, Chem. Rev., 115, 3170 (2015); https://doi.org/10.1021/cr500425u
- C. Bolm, J. Legros, J. Le Paih and L. Zani, Chem. Rev., 104, 6217 (2004); https://doi.org/10.1021/cr040664h
- B. Plietker, Iron Catalysis. Fundamentals and Applications; Topics in Organometallic Chemistry, Springer: Heidelberg, vol. 33 (2011).
- E.B. Bauer, Iron Catalysis II; Topics in Organometallic Chemistry, Springer International Publishing: Cham, vol. 50 (2015).
- R.M. Bullock, Catalysis without Precious Metals, Wiley-VCH: Weinheim (2010).
- I. Marek and Z. Rappoport, The Chemistry of Organoiron Compounds; Wiley: Chichester (2014).
- E.B. Bauer, Top. Organomet. Chem., 50, 1 (2015); https://doi.org/10.1007/3418_2015_107
- R.B. Bedford and P.B. Brenner, Top. Organomet. Chem., 50, 19 (2015); https://doi.org/10.1007/3418_2015_99
- X. Du and Z. Huang, ACS Catal., 7, 1227 (2017); https://doi.org/10.1021/acscatal.6b02990
- C. Darcel and J.-B. Sortais, Top. Organomet. Chem., 50, 173 (2015); https://doi.org/10.1007/3418_2015_104
- H. Wójtowicz-Mlochowska, Arkivoc, 12 (2017); https://doi.org/10.3998/ark.5550190.p009.578
- G. Olivo, O. Cussó, M. Borrell and M. Costas, J. Biol. Inorg. Chem., 22, 425 (2017); https://doi.org/10.1007/s00775-016-1434-z
- R.V. Ottenbacher, E.P. Talsi and K.P. Bryliakov, Molecules, 21, 1454 (2016); https://doi.org/10.3390/molecules21111454
- J.-L. Renaud and S. Gaillard, Top. Organomet. Chem., 50, 83 (2015); https://doi.org/10.1007/3418_2015_103
- B. Burcher, P.-A.R. Breuil, L. Magna and H. Olivier-Bourbigou, Top. Organomet. Chem., 50, 217 (2015); https://doi.org/10.1007/3418_2015_101
- W. Zhang, W.-H. Sun and C. Redshaw, Dalton Trans., 42, 8988 (2013); https://doi.org/10.1039/C2DT32337K
- P. Dydio, H.M. Key, A. Nazarenko, J.Y.-E. Rha, V. Seyedkazemi, D.S. Clark and J.F. Hartwig, Science, 354, 102 (2016); https://doi.org/10.1126/science.aah4427
- H.M. Key, P. Dydio, D.S. Clark and J.F. Hartwig, Nature, 534, 534 (2016); https://doi.org/10.1038/nature17968
- D.A. Vargas, A. Tinoco, V. Tyagi and R. Fasan, Angew. Chem. Int. Ed., 57, 9911 (2018); https://doi.org/10.1002/anie.201804779
- R.K. Zhang, K. Chen, X. Huang, L. Wohlschlager, H. Renata and F.H. Arnold, Nature, 565, 67 (2019); https://doi.org/10.1038/s41586-018-0808-5
- V. Tyagi, G. Sreenilayam, P. Bajaj, A. Tinoco and R. Fasan, Angew. Chem. Int. Ed., 55, 13562 (2016); https://doi.org/10.1002/anie.201607278
- K. Chen, S.Q. Zhang, O.F. Brandenberg, X. Hong and F.H. Arnold, J. Am. Chem. Soc., 140, 16402 (2018); https://doi.org/10.1021/jacs.8b09613
- A.L. Chandgude, X. Ren and R. Fasan, J. Am. Chem. Soc., 141, 9145 (2019); https://doi.org/10.1021/jacs.9b02700
- Z.J. Wang, N.E. Peck, H. Renata and F.H. Arnold, Chem. Sci., 5, 598 (2014); https://doi.org/10.1039/C3SC52535J
- G. Sreenilayam and R. Fasan, Chem. Commun., 51, 1532 (2015); https://doi.org/10.1039/C4CC08753D
- M.W. Wolf, D.A. Vargas and N. Lehnert, Inorg. Chem., 56, 5623 (2017); https://doi.org/10.1021/acs.inorgchem.6b03148
- V. Tyagi, R.B. Bonn and R. Fasan, Chem. Sci., 6, 2488 (2015); https://doi.org/10.1039/C5SC00080G
- S.B.J. Kan, X. Huang, Y. Gumulya, K. Chen and F.H. Arnold, Nature, 552, 132 (2017); https://doi.org/10.1038/nature24996
- X. Huang, M. Garcia-Borras, K. Miao, S.B.J. Kan, A. Zutshi, K.N. Houk and F.H. Arnold, ACS Cent. Sci., 5, 270 (2019); https://doi.org/10.1021/acscentsci.8b00679
- K. Chen, X. Huang, S.-Q. Zhang, A. Zhou, S.B.J. Kan, X. Hong and F. Arnold, Synlett, 30, 378 (2019); https://doi.org/10.1055/s-0037-1611662
- M.S. Kharasch and E.K. Fields, J. Am. Chem. Soc., 63, 2316 (1941); https://doi.org/10.1021/ja01854a006
- M. Tamura and J.K. Kochi, J. Am. Chem. Soc., 93, 1487 (1971); https://doi.org/10.1021/ja00735a030
- E. Nakamura, T. Hatakeyama, S. Ito, K. Ishizuka, L. Ilies and M. Nakamura, Org. React., 83, 1 (2013); https://doi.org/10.1002/0471264180.or083.01
- A. Rühlmann, D. Antovic, T.J.J. Müller and V.B. Urlacher, Adv. Synth. Catal., 359, 984 (2017); https://doi.org/10.1002/adsc.201601168
- X. Engelmann, I. Monte-Pérez and K. Ray, Angew. Chem. Int. Ed., 55, 7632 (2016); https://doi.org/10.1002/anie.201600507
- G.-D. Roiban and M.T. Reetz, Chem. Commun., 51, 2208 (2015); https://doi.org/10.1039/C4CC09218J
- A.B. McQuarters, M.W. Wolf, A.P. Hunt and N. Lehnert, Angew. Chem. Int. Ed., 53, 4750 (2014); https://doi.org/10.1002/anie.201402404
- P.R. Ortiz de Montellano, Chem. Rev., 110, 932 (2010); https://doi.org/10.1021/cr9002193
- E.P. Talsi and K.P. Bryliakov, Coord. Chem. Rev., 256, 1418 (2012); https://doi.org/10.1016/j.ccr.2012.04.005
- P.C.A. Bruijnincx, G. van Koten and R.J.M. Klein Gebbink, Chem. Soc. Rev., 37, 2716 (2008); https://doi.org/10.1039/b707179p
- T.D.H. Bugg and S. Ramaswamy, Curr. Opin. Chem. Biol., 12, 134 (2008); https://doi.org/10.1016/j.cbpa.2007.12.007
- D. Mansuy, M. Lange, J.C. Chottard, P. Guerin, P. Morliere, D. Brault and M. Rougee, Chem. Soc., Chem. Comm., 648 (1977); https://doi.org/10.1039/c39770000648
- L. Que Jr. and W.B. Tolman, Nature, 455, 333 (2008); https://doi.org/10.1038/nature07371
- M. Costas, M.P. Mehn, M.P. Jensen and L. Que Jr., Chem. Rev., 104, 939 (2004); https://doi.org/10.1021/cr020628n
- F. Napoly, R. Kieffer, L. Jean-Gérard, C. Goux-Henry, M. Draye and B. Andrioletti, Tetrahedron Lett., 56, 2517 (2015); https://doi.org/10.1016/j.tetlet.2015.03.115
- M.N. Kopylovich, A.P.C. Ribeiro, E.C.B.A. Alegria, N.M.R. Martins, L.M.D.R.S. Martins and A.J.L. Pombeiro, Adv. Organomet. Chem., 63, 91 (2015); https://doi.org/10.1016/bs.adomc.2015.02.004
- O.Y. Lyakin, R.V. Ottenbacher, K.P. Bryliakov and E.P. Talsi, ACS Catal., 2, 1196 (2012); https://doi.org/10.1021/cs300205n
- H. Wójtowicz-Mlochowska, Arkivoc, 12 (2017); https://doi.org/10.3998/ark.5550190.p009.578
- Y. Park, Y. Kim and S. Chang, Chem. Rev., 117, 9247 (2017); https://doi.org/10.1021/acs.chemrev.6b00644
- F. Collet, R.H. Dodd and P. Dauban, Chem. Commun., 5061 (2009); https://doi.org/10.1039/b905820f
- M. Shen and T.G. Driver, Org. Lett., 10, 3367 (2008); https://doi.org/10.1021/ol801227f
- J. Bonnamour and C. Bolm, Org. Lett., 13, 2012 (2011); https://doi.org/10.1021/ol2004066
- P.Y. Choy, S.M. Wong, A. Kapdi and F.Y. Kwong, Org. Chem. Front., 5, 288 (2018); https://doi.org/10.1039/C7QO00693D
- D.A. Colby, R.G. Bergman and J.A. Ellman, Chem. Rev., 110, 624 (2010); https://doi.org/10.1021/cr900005n
- M. Nagamoto and T. Nishimura, ACS Catal., 7, 833 (2017); https://doi.org/10.1021/acscatal.6b02495
- R. Shang and L. Liu, Sci. China Chem., 54, 1670 (2011); https://doi.org/10.1007/s11426-011-4381-0
- Z. Li, L. Cao and C.J. Li, Angew. Chem. Int. Ed., 46, 6505 (2007); https://doi.org/10.1002/anie.200701782
- B. Meunier, S.P. de Visser and S. Shaik, Chem. Rev., 104, 3947 (2004); https://doi.org/10.1021/cr020443g
- W. Nam, Y.-M. Lee and S. Fukuzumi, Acc. Chem. Res., 47, 1146 (2014); https://doi.org/10.1021/ar400258p
- D. Lee and S.J. Lippard, Eds.: J.A. McCleverty and T.J. Meyer, Comprehensive Coordination Chemistry II: From Biology to Nanotechnology; Pergamon: Oxford, vol. 8, pp 309 (2003).
- M.M. Abu-Omar, A. Loaiza and N. Hontzeas, Chem. Rev., 105, 2227 (2005); https://doi.org/10.1021/cr040653o
- O. Martínez-Ferraté, G.J.P. Britovsek, C. Claver and P.W.N.M. van Leeuwen, Inorg. Chim. Acta, 431, 156 (2015); https://doi.org/10.1016/j.ica.2014.12.016
- G. Olivo, G. Arancio, L. Mandolini, O. Lanzalunga and S. Di Stefano, Catal. Sci. Technol., 4, 2900 (2014); https://doi.org/10.1039/C4CY00626G
- M. Canta, D. Font, L. Gómez, X. Ribas and M. Costas, Adv. Synth. Catal., 356, 818 (2014); https://doi.org/10.1002/adsc.201300923
- J. England, R. Gondhia, L. Bigorra-Lopez, A.R. Petersen, A.J.P. White and G.J.P. Britovsek, Dalton Trans., 5319 (2009); https://doi.org/10.1039/b901390c
- M. Lenze and E.B. Bauer, Chem. Commun., 49, 5889 (2013); https://doi.org/10.1039/c3cc41131a
- B. Join, K. Möller, C. Ziebart, K. Schröder, D. Gördes, K. Thurow, A. Spannenberg, K. Junge and M. Beller, Adv. Synth. Catal., 353, 3023 (2011); https://doi.org/10.1002/adsc.201100210
- I. Prat, D. Font, A. Company, K. Junge, X. Ribas, M. Beller and M. Costas, Adv. Synth. Catal., 355, 947 (2013); https://doi.org/10.1002/adsc.201200938
- E.A. Mikhalyova, O.V. Makhlynets, T.D. Palluccio, A.S. Filatov and E.V. Rybak-Akimova, Chem. Commun., 48, 687 (2012); https://doi.org/10.1039/C1CC15935F
- S.R. Iyer, M.M. Javadi, Y. Feng, M.Y. Hyun, W.N. Oloo, C. Kim and L. Que, Chem. Commun., 50, 13777 (2014); https://doi.org/10.1039/C4CC06164K
- K. Suzuki, P.D. Oldenburg and L. Que Jr., Angew. Chem. Int. Ed., 47, 1887 (2008); https://doi.org/10.1002/anie.200705061
- G. Shul’pin, Catalysts, 6, 50 (2016); https://doi.org/10.3390/catal6040050
- G. Olivo, O. Lanzalunga and S. Di Stefano, Adv. Synth. Catal., 358, 843 (2016); https://doi.org/10.1002/adsc.201501024
- A.C. Lindhorst, S. Haslinger and F.E. Kühn, Chem. Commun., 51, 17193 (2015); https://doi.org/10.1039/C5CC07146A
- F. Gozzo, J. Mol. Catal. A, 171, 1 (2001); https://doi.org/10.1016/S1381-1169(01)00099-1
- H.J.H. Fenton, J. Chem. Soc. Trans., 65, 899 (1894); https://doi.org/10.1039/CT8946500899
- G.A. Russell, J. Am. Chem. Soc., 79, 3871 (1957); https://doi.org/10.1021/ja01571a068
- J. Kim, R.G. Harrison, C. Kim and L. Que Jr., J. Am. Chem. Soc., 118, 4373 (1996); https://doi.org/10.1021/ja9542303
- M.S. Seo, T. Kamachi, T. Kouno, K. Murata, M.J. Park, K. Yoshizawa and W. Nam, Angew. Chem. Int. Ed., 46, 2291 (2007); https://doi.org/10.1002/anie.200604219
- F.T. de Oliveira, A. Chanda, D. Banerjee, X. Shan, S. Mondal, L. Que Jr., E.L. Bominaar, E. Münck and T.J. Collins, Science, 315, 835 (2007); https://doi.org/10.1126/science.1133417
- K. Chen, M. Costas and L. Que Jr., J. Chem. Soc., Dalton Trans., 672 (2002); https://doi.org/10.1039/b108629d
- M. Costas, K. Chen and L. Que Jr., Coord. Chem. Rev., 200-202, 517 (2000); https://doi.org/10.1016/S0010-8545(00)00320-9
- J. Serrano-Plana, W.N. Oloo, L. Acosta-Rueda, K.K. Meier, B. Verdejo, E. García-España, M.G. Basallote, E. Münck, L. Que Jr., A. Company and M. Costas, J. Am. Chem. Soc., 137, 15833 (2015); https://doi.org/10.1021/jacs.5b09904
- Y. Song, H.-G. Mayes, M.J. Queensen, E.B. Bauer and C.M. Dupureur, Spectrochim. Acta A Mol. Biomol. Spectrosc., 174, 130 (2017); https://doi.org/10.1016/j.saa.2016.11.030
- W. Ma, J. Li, X. Tao, J. He, Y. Xu, J.C. Yu and J. Zhao, Angew. Chem. Int. Ed., 42, 1029 (2003); https://doi.org/10.1002/anie.200390264
- A. Theodoridis, J. Maigut, R. Puchta, E. Kudrik and R. van Eldik, Inorg. Chem., 47, 2994 (2008); https://doi.org/10.1021/ic702041g
- X. Chen, W. Ma, J. Li, Z. Wang, C. Chen, H. Ji and J. Zhao, J. Phys. Chem. C, 115, 4089 (2011); https://doi.org/10.1021/jp110277k
- J.A. Miller, L. Alexander, D.I. Mori, A.D. Ryabov and T.J. Collins, New J. Chem., 37, 3488 (2013); https://doi.org/10.1039/c3nj00525a
- M. Cheng, W. Song, W. Ma, C. Chen, J. Zhao, J. Lin and H. Zhu, Appl. Catal. B, 77, 355 (2008); https://doi.org/10.1016/j.apcatb.2007.08.006
- J. Kruid, R. Fogel and J.L. Limson, Chemosphere, 175, 247 (2017); https://doi.org/10.1016/j.chemosphere.2017.02.051
- L. Cheng, J. Wang, M. Wang and Z. Wu, Phys. Chem. Chem. Phys., 12, 4092 (2010); https://doi.org/10.1039/b917906b
- M. Ghosh, Y.L.K. Nikhil, B.B. Dhar and S.S. Gupta, Inorg. Chem., 54, 11792 (2015); https://doi.org/10.1021/acs.inorgchem.5b01937
- W.A. Donald, C.J. McKenzie and R.A.J. O’Hair, Angew. Chem. Int. Ed., 50, 8379 (2011); https://doi.org/10.1002/anie.201102146
- J.H. Han, S.-K. Yoo, J.S. Seo, S.J. Hong, S.K. Kim and C. Kim, Dalton Trans., 402 (2005); https://doi.org/10.1039/b414603d
- É. Balogh-Hergovich and G. Speier, J. Mol. Catal. A, 230, 79 (2005); https://doi.org/10.1016/j.molcata.2004.12.013
- N.Y. Oh, Y. Suh, M.J. Park, M.S. Seo, J. Kim and W. Nam, Angew. Chem. Int. Ed., 44, 4235 (2005); https://doi.org/10.1002/anie.200500623
- O. Pestovsky and A. Bakac, J. Am. Chem. Soc., 126, 13757 (2004); https://doi.org/10.1021/ja0457112
- T.N. Plank, J.L. Drake, D.K. Kim and T.W. Funk, Adv. Synth. Catal., 354, 597 (2012); https://doi.org/10.1002/adsc.201100896
- M.G. Coleman, A.N. Brown, B.A. Bolton and H. Guan, Adv. Synth. Catal., 352, 967 (2010); https://doi.org/10.1002/adsc.200900896
- S.A. Moyer and T.W. Funk, Tetrahedron Lett., 51, 5430 (2010); https://doi.org/10.1016/j.tetlet.2010.08.004
- M. Newcomb, D. Aebisher, R.E.P. Chandrasena, P.F. Hollenberg, R. Shen and M.J. Coon, J. Am. Chem. Soc., 125, 6064 (2003); https://doi.org/10.1021/ja0343858
- P. Böhm and H. Gröger, ChemCatChem, 7, 22 (2015); https://doi.org/10.1002/cctc.201402331
- C. Marchi-Delapierre, L. Rondot, C. Cavazza and S. Ménage, Isr. J. Chem., 55, 61 (2015); https://doi.org/10.1002/ijch.201400110
- G.J.P. Britovsek, J. England and A.J.P. White, Inorg. Chem., 44, 8125 (2005); https://doi.org/10.1021/ic0509229
- S.V. Kryatov, S. Taktak, I.V. Korendovych, E.V. Rybak-Akimova, J. Kaizer, S. Torelli, X. Shan, S. Mandal, V.L. MacMurdo, A. Mairata i Payeras and L. Que, Inorg. Chem., 44, 85 (2005); https://doi.org/10.1021/ic0485312
- K. Chen and L. Que Jr., Chem. Commun., 1375 (1999); https://doi.org/10.1039/a901678c
- O.V. Makhlynets, W.N. Oloo, Y.S. Moroz, I.G. Belaya, T.D. Palluccio, A.S. Filatov, P. Müller, M.A. Cranswick, L. Que Jr. and E.V. RybakAkimova, Chem. Commun., 50, 645 (2014); https://doi.org/10.1039/C3CC47632D
- M.S. Chen and M.C. White, Science, 327, 566 (2010); https://doi.org/10.1126/science.1183602
- M.S. Chen and M.C. White, Science, 318, 783 (2007); https://doi.org/10.1126/science.1148597
- E. Andris, R. Navrátil, J. Jašík, T. Terencio, M. Srnec, M. Costas and J. Roithová, J. Am. Chem. Soc., 139, 2757 (2017); https://doi.org/10.1021/jacs.6b12291
- M. Grau and G.J.P. Britovsek, Top. Organomet. Chem., 50, 145 (2015); https://doi.org/10.1007/3418_2015_100
- D.P. de Sousa and C.J. McKenzie, Top. Organomet. Chem., 50, 311 (2015); https://doi.org/10.1007/3418_2015_108
- K. Chen, M. Costas, J. Kim, A.K. Tipton and L. Que Jr., J. Am. Chem. Soc., 124, 3026 (2002); https://doi.org/10.1021/ja0120025
- L.L. Tang, M.A. DeNardo, C. Gayathri, R.R. Gil, R. Kanda and T.J. Collins, Environ. Sci. Technol., 50, 5261 (2016); https://doi.org/10.1021/acs.est.5b05518
- L.L. Tang, M.A. DeNardo, C.J. Schuler, M.R. Mills, C. Gayathri, R.R. Gil, R. Kanda and T.J. Collins, J. Am. Chem. Soc., 139, 879 (2017); https://doi.org/10.1021/jacs.6b11145
- G.R. Warner, M.R. Mills, C. Enslin, S. Pattanayak, C. Panda, T.K. Panda, S.S. Gupta, A.D. Ryabov and T.J. Collins, Chem. Eur. J., 21, 6226 (2015); https://doi.org/10.1002/chem.201406061
- K. Chen and L. Que Jr., J. Am. Chem. Soc., 123, 6327 (2001); https://doi.org/10.1021/ja010310x
- Y. Mekmouche, S. Ménage, C. Toia-Duboc, M. Fontecave, J.-B. Galey, C. Lebrun and J. Pécaut, Angew. Chem. Int. Ed., 40, 949 (2001); https://doi.org/10.1002/1521-3773(20010302)40:5<949::AIDANIE949>3.0.CO;2-4
- R. Mas-Balleste, M. Costas, T. van den Berg and L. Que Jr., Chem. Eur. J., 12, 7489 (2006); https://doi.org/10.1002/chem.200600453
- G. Roelfes, M. Lubben, R. Hage, L. Que Jr. and B.L. Feringa, Chem. Eur. J., 6, 2152 (2000); https://doi.org/10.1002/1521-3765(20000616)6:12<2152::AIDCHEM2152>3.0.CO;2-O
- J. England, G.J.P. Britovsek, N. Rabadia and A.J.P. White, Inorg. Chem., 46, 3752 (2007); https://doi.org/10.1021/ic070062r
- J. England, C.R. Davies, M. Banaru, A.J.P. White and G.J.P. Britovsek, Adv. Synth. Catal., 350, 883 (2008); https://doi.org/10.1002/adsc.200700462
- G.J.P. Britovsek, J. England and A.J.P. White, Dalton Trans., 1399 (2006); https://doi.org/10.1039/b513886h
- I. Prat, A. Company, T. Corona, T. Parella, X. Ribas and M. Costas, Inorg. Chem., 52, 9229 (2013); https://doi.org/10.1021/ic4004033
- G. Olivo, O. Lanzalunga, L. Mandolini and S. Di Stefano, J. Org. Chem., 78, 11508 (2013); https://doi.org/10.1021/jo4020744
- O. Cussó, I. Garcia-Bosch, X. Ribas, J. Lloret-Fillol and M. Costas, J. Am. Chem. Soc., 135, 14871 (2013); https://doi.org/10.1021/ja4078446
- S. Sahu and D.P. Goldberg, J. Am. Chem. Soc., 138, 11410 (2016); https://doi.org/10.1021/jacs.6b05251
- C. Krebs, D. Galonic Fujimori, C.T. Walsh and J.M. Bollinger Jr., Acc. Chem. Res., 40, 484 (2007); https://doi.org/10.1021/ar700066p
- S. Sinnecker, N. Svensen, E.W. Barr, S. Ye, J.M. Bollinger Jr., F. Neese and C. Krebs, J. Am. Chem. Soc., 129, 6168 (2007); https://doi.org/10.1021/ja067899q
- S. Paria, L. Que Jr. and T.K. Paine, Angew. Chem. Int. Ed., 50, 11129 (2011); https://doi.org/10.1002/anie.201103971
- S. Chatterjee and T.K. Paine, Angew. Chem. Int. Ed., 54, 9338 (2015); https://doi.org/10.1002/anie.201502229
- D. Sheet and T.K. Paine, Chem. Sci., 7, 5322 (2016); https://doi.org/10.1039/C6SC01476C
- I. Siewert and C. Limberg, Angew. Chem. Int. Ed., 47, 7953 (2008); https://doi.org/10.1002/anie.200802955
- D.H.R. Barton, R.S. Hay-Motherwell and W.B. Motherwell, Tetrahedron Lett., 24, 1979 (1983); https://doi.org/10.1016/S0040-4039(00)81821-3
- D.H.R. Barton, J. Boivin, M. Gastiger, J. Morzycki, R.S. Hay-Motherwell, W.B. Motherwell, N. Ozbalik and K.M. Schwartzentruber, J. Chem. Soc., Perkin Trans. 1, 947 (1986); https://doi.org/10.1039/p19860000947
- D.H.R. Barton and T. Li, Chem. Commun., 821 (1998); https://doi.org/10.1039/a800552d
- K. Schroder, B. Join, A.J. Amali, K. Junge, X. Ribas, M. Costas and M. Beller, Angew. Chem. Int. Ed., 50, 1425 (2011); https://doi.org/10.1002/anie.201004623
- Q.F. Cheng, X.Y. Xu, W.X. Ma, S.J. Yang and T.P. You, Chin. Chem. Lett., 16, 1467 (2005).
- P. Stavropoulos, R. Celenligil-Cetin and A.E. Tapper, Acc. Chem. Res., 34, 745 (2001); https://doi.org/10.1021/ar000100+
- A. Gonzalez-de-Castro, C.M. Robertson and J. Xiao, J. Am. Chem. Soc., 136, 8350 (2014); https://doi.org/10.1021/ja502167h
- A. Gonzalez-de-Castro and J. Xiao, J. Am. Chem. Soc., 137, 8206 (2015); https://doi.org/10.1021/jacs.5b03956
- S.O. Kim, C.V. Sastri, M.S. Seo, J. Kim and W. Nam, J. Am. Chem. Soc., 127, 4178 (2005); https://doi.org/10.1021/ja043083i
- B. Muhldorf and R. Wolf, Angew. Chem. Int. Ed., 55, 427 (2016); https://doi.org/10.1002/anie.201507170
- P. Hu, M. Tan, L. Cheng, H. Zhao, R. Feng, W.-J. Gu and W. Han, Nat. Commun., 10, 2425 (2019); https://doi.org/10.1038/s41467-019-10414-7
- G.A. Molander and N. Ellis, Acc. Chem. Res., 40, 275 (2007); https://doi.org/10.1021/ar050199q
- Y. Ishii, S. Sakaguchi and T. Iwahama, Adv. Synth. Catal., 343, 393 (2001); https://doi.org/10.1002/1615-4169(200107)343:5<393::AIDADSC393>3.0.CO;2-K
- E. Gaster, S. Kozuch and D. Pappo, Angew. Chem. Int. Ed., 56, 5912 (2017); https://doi.org/10.1002/anie.201702511
- M. Borrell, S. Gil-Caballero, M. Bietti and M. Costas, ACS Catal., 10, 4702 (2020); https://doi.org/10.1021/acscatal.9b05423
- J.R. Griffin, C.I. Wendell, J.A. Garwin and M.C. White, J. Am. Chem. Soc., 139, 13624 (2017); https://doi.org/10.1021/jacs.7b07602
- G.-Q. Chen, Z.-J. Xu, C.-Y. Zhou and C.-M. Che, Chem. Commun., 47, 10963 (2011); https://doi.org/10.1039/c1cc13574k
- A. Dutta Chowdhury and G. Kumar Lahiri, Chem. Commun., 48, 3448 (2012); https://doi.org/10.1039/c2cc17889c
- A.M. Balija, K.J. Stowers, M.J. Schultz and M.S. Sigman, Org. Lett., 8, 1121 (2006); https://doi.org/10.1021/ol053110p
- A.D. Chowdhury, R. Ray and G.K. Lahiri, Chem. Commun., 48, 5497 (2012); https://doi.org/10.1039/c2cc32051g
- J. Chen and C.-M. Che, Angew. Chem. Int. Ed., 43, 4950 (2004); https://doi.org/10.1002/anie.200460545
- Y.-D. Du, C.-W. Tse, Z.-J. Xu, Y. Liu and C.-M. Che, Chem. Commun., 50, 12669 (2014); https://doi.org/10.1039/C4CC05972G
- S.C. Hammer, G. Kubik, E. Watkins, S. Huang, H. Minges and F.H. Arnold, Science, 358, 215 (2017); https://doi.org/10.1126/science.aao1482
- P.R.O. de Montellano, Cytochrome P-450 Structure, Mechanism and Biochemistry, Plenum Press: New York (1986).
- D. Mansuy, Pure Appl. Chem., 59, 759 (1987); https://doi.org/10.1351/pac198759060759
- I. Tabushi, M. Kodera and M. Yokoyama, J. Am. Chem. Soc., 107, 4466 (1985); https://doi.org/10.1021/ja00301a016
- J. Gui, C.-M. Pan, Y. Jin, T. Qin, J.C. Lo, B.J. Lee, S.H. Spergel, M.E. Mertzman, W.J. Pitts, T.E. La Cruz, M.A. Schmidt, N. Darvatkar, S.R. Natarajan and P.S. Baran, Science, 348, 886 (2015); https://doi.org/10.1126/science.aab0245
- J.C. Lo, J. Gui, Y. Yabe, C.-M. Pan and P.S. Baran, Nature, 516, 343 (2014); https://doi.org/10.1038/nature14006
- J.C. Lo, D.Y. Kim, C.-M. Pan, J.T. Edwards, Y. Yabe, J.H. Gui, T. Qin, S. Gutiérrez, J. Giacoboni, M.W. Smith, P.L. Holland and P.S. Baran, J. Am. Chem. Soc., 139, 2484 (2017); https://doi.org/10.1021/jacs.6b13155
- J.C. Lo, Y. Yabe and P.S. Baran, J. Am. Chem. Soc., 136, 1304 (2014); https://doi.org/10.1021/ja4117632
- H.T. Dao, C. Li, Q. Michaudel, B.D. Maxwell and P.S. Baran, J. Am. Chem. Soc., 137, 8046 (2015); https://doi.org/10.1021/jacs.5b05144
- S.W.M. Crossley, C. Obradors, R.M. Martinez and R.A. Shenvi, Chem. Rev., 116, 8912 (2016); https://doi.org/10.1021/acs.chemrev.6b00334
- T. Hashimoto, D. Hirose and T. Taniguchi, Angew. Chem. Int. Ed., 53, 2730 (2014); https://doi.org/10.1002/anie.201308675
- E.K. Leggans, T.J. Barker, K.K. Duncan and D.L. Boger, Org. Lett., 14, 1428 (2012); https://doi.org/10.1021/ol300173v
- T. Taniguchi, N. Goto, A. Nishibata and H. Ishibashi, Org. Lett., 12, 112 (2009); https://doi.org/10.1021/ol902562j
- T. Sugimori, S. Horike, S. Tsumura, M. Handa and K. Kasuga, Inorg. Chim. Acta, 283, 275 (1998); https://doi.org/10.1016/S0020-1693(98)00090-5
- M. Takeuchi, M. Kodera, K. Kano and Z. Yoshida, J. Mol. Catal. Chem., 113, 51 (1996); https://doi.org/10.1016/S1381-1169(96)00047-7
- B. Liu, F. Jin, T. Wang, X. Yuan and W. Han, Angew. Chem. Int. Ed., 56, 12712 (2017); https://doi.org/10.1002/anie.201707006
- R.J. DeLuca, J.L. Edwards, L.D. Steffens, B.W. Michel, X. Qiao, C. Zhu, S.P. Cook and M.S. Sigman, J. Org. Chem., 78, 1682 (2013); https://doi.org/10.1021/jo302638v
- B. Liu and W. Han, Synlett, 29, 383 (2018); https://doi.org/10.1055/s-0036-1591532
- S. Srinivasan and W.T. Ford, J. Mol. Catal., 64, 291 (1991); https://doi.org/10.1016/0304-5102(91)85139-S
- H. Subramanian and R.T. Koodali, React. Kinet. Catal. Lett., 95, 239 (2008); https://doi.org/10.1007/s11144-008-5352-0
- X.T. Zhou, H. B. Ji, L. X. Pei, Y. B. She, J. C. Xu and L.F. Wang, Chin. J. Org. Chem., 27, 1039 (2007).
- B. Meunier, Biomimetic Oxidations Mediated by Metal Complexes, Imperial College Press: London (2000).
References
A. Suzuki, Angew. Chem. Int. Ed., 50, 6722 (2011); https://doi.org/10.1002/anie.201101379
E. Negishi, Angew. Chem. Int. Ed., 50, 6738 (2011); https://doi.org/10.1002/anie.201101380
C.C.C.J. Seechurn, M.O. Kitching, T.J. Colacot and V. Snieckus, Angew. Chem. Int. Ed., 51, 5062 (2012); https://doi.org/10.1002/anie.201107017
A. Biffis, P. Centomo, A. Del Zotto and M. Zecca, Chem. Rev., 118, 2249 (2018); https://doi.org/10.1021/acs.chemrev.7b00443
F. Christoffel and T.R. Ward, Catal. Lett., 148, 489 (2018); https://doi.org/10.1007/s10562-017-2285-0
D. Roy and Y. Uozumi, Adv. Synth. Catal., 360, 602 (2018); https://doi.org/10.1002/adsc.201700810
P. Ruiz-Castillo and S.L. Buchwald, Chem. Rev., 116, 12564 (2016); https://doi.org/10.1021/acs.chemrev.6b00512
F. Kallmeier and R. Kempe, Angew. Chem. Int. Ed., 57, 46 (2018); https://doi.org/10.1002/anie.201709010
A. Rosas-Hernandez, C. Steinlechner, H. Junge and M. Beller, Top. Curr. Chem., 376, 1 (2018); https://doi.org/10.1007/s41061-017-0179-7
P.T. Wolczanski, Organometallics, 37, 505 (2018); https://doi.org/10.1021/acs.organomet.7b00753
N. Rajesh, N. Barsu and B. Sundararaju, Tetrahedron Lett., 59, 862 (2018); https://doi.org/10.1016/j.tetlet.2018.01.065
D. Wei and C. Darcel, Chem. Rev., 119, 2550 (2019); https://doi.org/10.1021/acs.chemrev.8b00372
E.B. Bauer, Isr. J. Chem., 57, 1131 (2017); https://doi.org/10.1002/ijch.201700050
A. Correa, O.G. Mancheño and C. Bolm, Chem. Soc. Rev., 37, 1108 (2008); https://doi.org/10.1039/B801794H
S. Dadashi-Silab and K. Matyjaszewski, ACS Macro Lett., 8, 1110 (2019); https://doi.org/10.1021/acsmacrolett.9b00579
P.I. Dalko and L. Moisan, Angew. Chem. Int. Ed., 43, 5138 (2004); https://doi.org/10.1002/anie.200400650.
W. Huang, W.-H. Xu, W.H.E. Schwarz and J. Li, Inorg. Chem., 55, 4616 (2016); https://doi.org/10.1021/acs.inorgchem.6b00442
J.-B. Lu, J. Jian, W. Huang, H. Lin, J. Li and M. Zhou, Phys. Chem. Chem. Phys., 18, 31125 (2016); https://doi.org/10.1039/C6CP06753K
W.M. Reiff and G.J. Long, Mössbauer Spectroscopy Applied to Inorganic Chemistry, In: Mössbauer Spectroscopy and the Coordination Chemistry of Iron, Springer, pp. 245-283 (1984).
S.K. Ghorai, V.G. Gopalsamuthiram, A.M. Jawalekar, R.E. Patre and S. Pal, Tetrahedron, 73, 1769 (2017); https://doi.org/10.1016/j.tet.2017.02.033
P. Chirik, Angew. Chem. Int. Ed., 56, 5170 (2017); https://doi.org/10.1002/anie.201611959
N. Yoshikai and E. Nakamura, Chem. Rev., 112, 2339 (2012); https://doi.org/10.1021/cr200241f
I. Bauer and H.-J. Knölker, Chem. Rev., 115, 3170 (2015); https://doi.org/10.1021/cr500425u
C. Bolm, J. Legros, J. Le Paih and L. Zani, Chem. Rev., 104, 6217 (2004); https://doi.org/10.1021/cr040664h
B. Plietker, Iron Catalysis. Fundamentals and Applications; Topics in Organometallic Chemistry, Springer: Heidelberg, vol. 33 (2011).
E.B. Bauer, Iron Catalysis II; Topics in Organometallic Chemistry, Springer International Publishing: Cham, vol. 50 (2015).
R.M. Bullock, Catalysis without Precious Metals, Wiley-VCH: Weinheim (2010).
I. Marek and Z. Rappoport, The Chemistry of Organoiron Compounds; Wiley: Chichester (2014).
E.B. Bauer, Top. Organomet. Chem., 50, 1 (2015); https://doi.org/10.1007/3418_2015_107
R.B. Bedford and P.B. Brenner, Top. Organomet. Chem., 50, 19 (2015); https://doi.org/10.1007/3418_2015_99
X. Du and Z. Huang, ACS Catal., 7, 1227 (2017); https://doi.org/10.1021/acscatal.6b02990
C. Darcel and J.-B. Sortais, Top. Organomet. Chem., 50, 173 (2015); https://doi.org/10.1007/3418_2015_104
H. Wójtowicz-Mlochowska, Arkivoc, 12 (2017); https://doi.org/10.3998/ark.5550190.p009.578
G. Olivo, O. Cussó, M. Borrell and M. Costas, J. Biol. Inorg. Chem., 22, 425 (2017); https://doi.org/10.1007/s00775-016-1434-z
R.V. Ottenbacher, E.P. Talsi and K.P. Bryliakov, Molecules, 21, 1454 (2016); https://doi.org/10.3390/molecules21111454
J.-L. Renaud and S. Gaillard, Top. Organomet. Chem., 50, 83 (2015); https://doi.org/10.1007/3418_2015_103
B. Burcher, P.-A.R. Breuil, L. Magna and H. Olivier-Bourbigou, Top. Organomet. Chem., 50, 217 (2015); https://doi.org/10.1007/3418_2015_101
W. Zhang, W.-H. Sun and C. Redshaw, Dalton Trans., 42, 8988 (2013); https://doi.org/10.1039/C2DT32337K
P. Dydio, H.M. Key, A. Nazarenko, J.Y.-E. Rha, V. Seyedkazemi, D.S. Clark and J.F. Hartwig, Science, 354, 102 (2016); https://doi.org/10.1126/science.aah4427
H.M. Key, P. Dydio, D.S. Clark and J.F. Hartwig, Nature, 534, 534 (2016); https://doi.org/10.1038/nature17968
D.A. Vargas, A. Tinoco, V. Tyagi and R. Fasan, Angew. Chem. Int. Ed., 57, 9911 (2018); https://doi.org/10.1002/anie.201804779
R.K. Zhang, K. Chen, X. Huang, L. Wohlschlager, H. Renata and F.H. Arnold, Nature, 565, 67 (2019); https://doi.org/10.1038/s41586-018-0808-5
V. Tyagi, G. Sreenilayam, P. Bajaj, A. Tinoco and R. Fasan, Angew. Chem. Int. Ed., 55, 13562 (2016); https://doi.org/10.1002/anie.201607278
K. Chen, S.Q. Zhang, O.F. Brandenberg, X. Hong and F.H. Arnold, J. Am. Chem. Soc., 140, 16402 (2018); https://doi.org/10.1021/jacs.8b09613
A.L. Chandgude, X. Ren and R. Fasan, J. Am. Chem. Soc., 141, 9145 (2019); https://doi.org/10.1021/jacs.9b02700
Z.J. Wang, N.E. Peck, H. Renata and F.H. Arnold, Chem. Sci., 5, 598 (2014); https://doi.org/10.1039/C3SC52535J
G. Sreenilayam and R. Fasan, Chem. Commun., 51, 1532 (2015); https://doi.org/10.1039/C4CC08753D
M.W. Wolf, D.A. Vargas and N. Lehnert, Inorg. Chem., 56, 5623 (2017); https://doi.org/10.1021/acs.inorgchem.6b03148
V. Tyagi, R.B. Bonn and R. Fasan, Chem. Sci., 6, 2488 (2015); https://doi.org/10.1039/C5SC00080G
S.B.J. Kan, X. Huang, Y. Gumulya, K. Chen and F.H. Arnold, Nature, 552, 132 (2017); https://doi.org/10.1038/nature24996
X. Huang, M. Garcia-Borras, K. Miao, S.B.J. Kan, A. Zutshi, K.N. Houk and F.H. Arnold, ACS Cent. Sci., 5, 270 (2019); https://doi.org/10.1021/acscentsci.8b00679
K. Chen, X. Huang, S.-Q. Zhang, A. Zhou, S.B.J. Kan, X. Hong and F. Arnold, Synlett, 30, 378 (2019); https://doi.org/10.1055/s-0037-1611662
M.S. Kharasch and E.K. Fields, J. Am. Chem. Soc., 63, 2316 (1941); https://doi.org/10.1021/ja01854a006
M. Tamura and J.K. Kochi, J. Am. Chem. Soc., 93, 1487 (1971); https://doi.org/10.1021/ja00735a030
E. Nakamura, T. Hatakeyama, S. Ito, K. Ishizuka, L. Ilies and M. Nakamura, Org. React., 83, 1 (2013); https://doi.org/10.1002/0471264180.or083.01
A. Rühlmann, D. Antovic, T.J.J. Müller and V.B. Urlacher, Adv. Synth. Catal., 359, 984 (2017); https://doi.org/10.1002/adsc.201601168
X. Engelmann, I. Monte-Pérez and K. Ray, Angew. Chem. Int. Ed., 55, 7632 (2016); https://doi.org/10.1002/anie.201600507
G.-D. Roiban and M.T. Reetz, Chem. Commun., 51, 2208 (2015); https://doi.org/10.1039/C4CC09218J
A.B. McQuarters, M.W. Wolf, A.P. Hunt and N. Lehnert, Angew. Chem. Int. Ed., 53, 4750 (2014); https://doi.org/10.1002/anie.201402404
P.R. Ortiz de Montellano, Chem. Rev., 110, 932 (2010); https://doi.org/10.1021/cr9002193
E.P. Talsi and K.P. Bryliakov, Coord. Chem. Rev., 256, 1418 (2012); https://doi.org/10.1016/j.ccr.2012.04.005
P.C.A. Bruijnincx, G. van Koten and R.J.M. Klein Gebbink, Chem. Soc. Rev., 37, 2716 (2008); https://doi.org/10.1039/b707179p
T.D.H. Bugg and S. Ramaswamy, Curr. Opin. Chem. Biol., 12, 134 (2008); https://doi.org/10.1016/j.cbpa.2007.12.007
D. Mansuy, M. Lange, J.C. Chottard, P. Guerin, P. Morliere, D. Brault and M. Rougee, Chem. Soc., Chem. Comm., 648 (1977); https://doi.org/10.1039/c39770000648
L. Que Jr. and W.B. Tolman, Nature, 455, 333 (2008); https://doi.org/10.1038/nature07371
M. Costas, M.P. Mehn, M.P. Jensen and L. Que Jr., Chem. Rev., 104, 939 (2004); https://doi.org/10.1021/cr020628n
F. Napoly, R. Kieffer, L. Jean-Gérard, C. Goux-Henry, M. Draye and B. Andrioletti, Tetrahedron Lett., 56, 2517 (2015); https://doi.org/10.1016/j.tetlet.2015.03.115
M.N. Kopylovich, A.P.C. Ribeiro, E.C.B.A. Alegria, N.M.R. Martins, L.M.D.R.S. Martins and A.J.L. Pombeiro, Adv. Organomet. Chem., 63, 91 (2015); https://doi.org/10.1016/bs.adomc.2015.02.004
O.Y. Lyakin, R.V. Ottenbacher, K.P. Bryliakov and E.P. Talsi, ACS Catal., 2, 1196 (2012); https://doi.org/10.1021/cs300205n
H. Wójtowicz-Mlochowska, Arkivoc, 12 (2017); https://doi.org/10.3998/ark.5550190.p009.578
Y. Park, Y. Kim and S. Chang, Chem. Rev., 117, 9247 (2017); https://doi.org/10.1021/acs.chemrev.6b00644
F. Collet, R.H. Dodd and P. Dauban, Chem. Commun., 5061 (2009); https://doi.org/10.1039/b905820f
M. Shen and T.G. Driver, Org. Lett., 10, 3367 (2008); https://doi.org/10.1021/ol801227f
J. Bonnamour and C. Bolm, Org. Lett., 13, 2012 (2011); https://doi.org/10.1021/ol2004066
P.Y. Choy, S.M. Wong, A. Kapdi and F.Y. Kwong, Org. Chem. Front., 5, 288 (2018); https://doi.org/10.1039/C7QO00693D
D.A. Colby, R.G. Bergman and J.A. Ellman, Chem. Rev., 110, 624 (2010); https://doi.org/10.1021/cr900005n
M. Nagamoto and T. Nishimura, ACS Catal., 7, 833 (2017); https://doi.org/10.1021/acscatal.6b02495
R. Shang and L. Liu, Sci. China Chem., 54, 1670 (2011); https://doi.org/10.1007/s11426-011-4381-0
Z. Li, L. Cao and C.J. Li, Angew. Chem. Int. Ed., 46, 6505 (2007); https://doi.org/10.1002/anie.200701782
B. Meunier, S.P. de Visser and S. Shaik, Chem. Rev., 104, 3947 (2004); https://doi.org/10.1021/cr020443g
W. Nam, Y.-M. Lee and S. Fukuzumi, Acc. Chem. Res., 47, 1146 (2014); https://doi.org/10.1021/ar400258p
D. Lee and S.J. Lippard, Eds.: J.A. McCleverty and T.J. Meyer, Comprehensive Coordination Chemistry II: From Biology to Nanotechnology; Pergamon: Oxford, vol. 8, pp 309 (2003).
M.M. Abu-Omar, A. Loaiza and N. Hontzeas, Chem. Rev., 105, 2227 (2005); https://doi.org/10.1021/cr040653o
O. Martínez-Ferraté, G.J.P. Britovsek, C. Claver and P.W.N.M. van Leeuwen, Inorg. Chim. Acta, 431, 156 (2015); https://doi.org/10.1016/j.ica.2014.12.016
G. Olivo, G. Arancio, L. Mandolini, O. Lanzalunga and S. Di Stefano, Catal. Sci. Technol., 4, 2900 (2014); https://doi.org/10.1039/C4CY00626G
M. Canta, D. Font, L. Gómez, X. Ribas and M. Costas, Adv. Synth. Catal., 356, 818 (2014); https://doi.org/10.1002/adsc.201300923
J. England, R. Gondhia, L. Bigorra-Lopez, A.R. Petersen, A.J.P. White and G.J.P. Britovsek, Dalton Trans., 5319 (2009); https://doi.org/10.1039/b901390c
M. Lenze and E.B. Bauer, Chem. Commun., 49, 5889 (2013); https://doi.org/10.1039/c3cc41131a
B. Join, K. Möller, C. Ziebart, K. Schröder, D. Gördes, K. Thurow, A. Spannenberg, K. Junge and M. Beller, Adv. Synth. Catal., 353, 3023 (2011); https://doi.org/10.1002/adsc.201100210
I. Prat, D. Font, A. Company, K. Junge, X. Ribas, M. Beller and M. Costas, Adv. Synth. Catal., 355, 947 (2013); https://doi.org/10.1002/adsc.201200938
E.A. Mikhalyova, O.V. Makhlynets, T.D. Palluccio, A.S. Filatov and E.V. Rybak-Akimova, Chem. Commun., 48, 687 (2012); https://doi.org/10.1039/C1CC15935F
S.R. Iyer, M.M. Javadi, Y. Feng, M.Y. Hyun, W.N. Oloo, C. Kim and L. Que, Chem. Commun., 50, 13777 (2014); https://doi.org/10.1039/C4CC06164K
K. Suzuki, P.D. Oldenburg and L. Que Jr., Angew. Chem. Int. Ed., 47, 1887 (2008); https://doi.org/10.1002/anie.200705061
G. Shul’pin, Catalysts, 6, 50 (2016); https://doi.org/10.3390/catal6040050
G. Olivo, O. Lanzalunga and S. Di Stefano, Adv. Synth. Catal., 358, 843 (2016); https://doi.org/10.1002/adsc.201501024
A.C. Lindhorst, S. Haslinger and F.E. Kühn, Chem. Commun., 51, 17193 (2015); https://doi.org/10.1039/C5CC07146A
F. Gozzo, J. Mol. Catal. A, 171, 1 (2001); https://doi.org/10.1016/S1381-1169(01)00099-1
H.J.H. Fenton, J. Chem. Soc. Trans., 65, 899 (1894); https://doi.org/10.1039/CT8946500899
G.A. Russell, J. Am. Chem. Soc., 79, 3871 (1957); https://doi.org/10.1021/ja01571a068
J. Kim, R.G. Harrison, C. Kim and L. Que Jr., J. Am. Chem. Soc., 118, 4373 (1996); https://doi.org/10.1021/ja9542303
M.S. Seo, T. Kamachi, T. Kouno, K. Murata, M.J. Park, K. Yoshizawa and W. Nam, Angew. Chem. Int. Ed., 46, 2291 (2007); https://doi.org/10.1002/anie.200604219
F.T. de Oliveira, A. Chanda, D. Banerjee, X. Shan, S. Mondal, L. Que Jr., E.L. Bominaar, E. Münck and T.J. Collins, Science, 315, 835 (2007); https://doi.org/10.1126/science.1133417
K. Chen, M. Costas and L. Que Jr., J. Chem. Soc., Dalton Trans., 672 (2002); https://doi.org/10.1039/b108629d
M. Costas, K. Chen and L. Que Jr., Coord. Chem. Rev., 200-202, 517 (2000); https://doi.org/10.1016/S0010-8545(00)00320-9
J. Serrano-Plana, W.N. Oloo, L. Acosta-Rueda, K.K. Meier, B. Verdejo, E. García-España, M.G. Basallote, E. Münck, L. Que Jr., A. Company and M. Costas, J. Am. Chem. Soc., 137, 15833 (2015); https://doi.org/10.1021/jacs.5b09904
Y. Song, H.-G. Mayes, M.J. Queensen, E.B. Bauer and C.M. Dupureur, Spectrochim. Acta A Mol. Biomol. Spectrosc., 174, 130 (2017); https://doi.org/10.1016/j.saa.2016.11.030
W. Ma, J. Li, X. Tao, J. He, Y. Xu, J.C. Yu and J. Zhao, Angew. Chem. Int. Ed., 42, 1029 (2003); https://doi.org/10.1002/anie.200390264
A. Theodoridis, J. Maigut, R. Puchta, E. Kudrik and R. van Eldik, Inorg. Chem., 47, 2994 (2008); https://doi.org/10.1021/ic702041g
X. Chen, W. Ma, J. Li, Z. Wang, C. Chen, H. Ji and J. Zhao, J. Phys. Chem. C, 115, 4089 (2011); https://doi.org/10.1021/jp110277k
J.A. Miller, L. Alexander, D.I. Mori, A.D. Ryabov and T.J. Collins, New J. Chem., 37, 3488 (2013); https://doi.org/10.1039/c3nj00525a
M. Cheng, W. Song, W. Ma, C. Chen, J. Zhao, J. Lin and H. Zhu, Appl. Catal. B, 77, 355 (2008); https://doi.org/10.1016/j.apcatb.2007.08.006
J. Kruid, R. Fogel and J.L. Limson, Chemosphere, 175, 247 (2017); https://doi.org/10.1016/j.chemosphere.2017.02.051
L. Cheng, J. Wang, M. Wang and Z. Wu, Phys. Chem. Chem. Phys., 12, 4092 (2010); https://doi.org/10.1039/b917906b
M. Ghosh, Y.L.K. Nikhil, B.B. Dhar and S.S. Gupta, Inorg. Chem., 54, 11792 (2015); https://doi.org/10.1021/acs.inorgchem.5b01937
W.A. Donald, C.J. McKenzie and R.A.J. O’Hair, Angew. Chem. Int. Ed., 50, 8379 (2011); https://doi.org/10.1002/anie.201102146
J.H. Han, S.-K. Yoo, J.S. Seo, S.J. Hong, S.K. Kim and C. Kim, Dalton Trans., 402 (2005); https://doi.org/10.1039/b414603d
É. Balogh-Hergovich and G. Speier, J. Mol. Catal. A, 230, 79 (2005); https://doi.org/10.1016/j.molcata.2004.12.013
N.Y. Oh, Y. Suh, M.J. Park, M.S. Seo, J. Kim and W. Nam, Angew. Chem. Int. Ed., 44, 4235 (2005); https://doi.org/10.1002/anie.200500623
O. Pestovsky and A. Bakac, J. Am. Chem. Soc., 126, 13757 (2004); https://doi.org/10.1021/ja0457112
T.N. Plank, J.L. Drake, D.K. Kim and T.W. Funk, Adv. Synth. Catal., 354, 597 (2012); https://doi.org/10.1002/adsc.201100896
M.G. Coleman, A.N. Brown, B.A. Bolton and H. Guan, Adv. Synth. Catal., 352, 967 (2010); https://doi.org/10.1002/adsc.200900896
S.A. Moyer and T.W. Funk, Tetrahedron Lett., 51, 5430 (2010); https://doi.org/10.1016/j.tetlet.2010.08.004
M. Newcomb, D. Aebisher, R.E.P. Chandrasena, P.F. Hollenberg, R. Shen and M.J. Coon, J. Am. Chem. Soc., 125, 6064 (2003); https://doi.org/10.1021/ja0343858
P. Böhm and H. Gröger, ChemCatChem, 7, 22 (2015); https://doi.org/10.1002/cctc.201402331
C. Marchi-Delapierre, L. Rondot, C. Cavazza and S. Ménage, Isr. J. Chem., 55, 61 (2015); https://doi.org/10.1002/ijch.201400110
G.J.P. Britovsek, J. England and A.J.P. White, Inorg. Chem., 44, 8125 (2005); https://doi.org/10.1021/ic0509229
S.V. Kryatov, S. Taktak, I.V. Korendovych, E.V. Rybak-Akimova, J. Kaizer, S. Torelli, X. Shan, S. Mandal, V.L. MacMurdo, A. Mairata i Payeras and L. Que, Inorg. Chem., 44, 85 (2005); https://doi.org/10.1021/ic0485312
K. Chen and L. Que Jr., Chem. Commun., 1375 (1999); https://doi.org/10.1039/a901678c
O.V. Makhlynets, W.N. Oloo, Y.S. Moroz, I.G. Belaya, T.D. Palluccio, A.S. Filatov, P. Müller, M.A. Cranswick, L. Que Jr. and E.V. RybakAkimova, Chem. Commun., 50, 645 (2014); https://doi.org/10.1039/C3CC47632D
M.S. Chen and M.C. White, Science, 327, 566 (2010); https://doi.org/10.1126/science.1183602
M.S. Chen and M.C. White, Science, 318, 783 (2007); https://doi.org/10.1126/science.1148597
E. Andris, R. Navrátil, J. Jašík, T. Terencio, M. Srnec, M. Costas and J. Roithová, J. Am. Chem. Soc., 139, 2757 (2017); https://doi.org/10.1021/jacs.6b12291
M. Grau and G.J.P. Britovsek, Top. Organomet. Chem., 50, 145 (2015); https://doi.org/10.1007/3418_2015_100
D.P. de Sousa and C.J. McKenzie, Top. Organomet. Chem., 50, 311 (2015); https://doi.org/10.1007/3418_2015_108
K. Chen, M. Costas, J. Kim, A.K. Tipton and L. Que Jr., J. Am. Chem. Soc., 124, 3026 (2002); https://doi.org/10.1021/ja0120025
L.L. Tang, M.A. DeNardo, C. Gayathri, R.R. Gil, R. Kanda and T.J. Collins, Environ. Sci. Technol., 50, 5261 (2016); https://doi.org/10.1021/acs.est.5b05518
L.L. Tang, M.A. DeNardo, C.J. Schuler, M.R. Mills, C. Gayathri, R.R. Gil, R. Kanda and T.J. Collins, J. Am. Chem. Soc., 139, 879 (2017); https://doi.org/10.1021/jacs.6b11145
G.R. Warner, M.R. Mills, C. Enslin, S. Pattanayak, C. Panda, T.K. Panda, S.S. Gupta, A.D. Ryabov and T.J. Collins, Chem. Eur. J., 21, 6226 (2015); https://doi.org/10.1002/chem.201406061
K. Chen and L. Que Jr., J. Am. Chem. Soc., 123, 6327 (2001); https://doi.org/10.1021/ja010310x
Y. Mekmouche, S. Ménage, C. Toia-Duboc, M. Fontecave, J.-B. Galey, C. Lebrun and J. Pécaut, Angew. Chem. Int. Ed., 40, 949 (2001); https://doi.org/10.1002/1521-3773(20010302)40:5<949::AIDANIE949>3.0.CO;2-4
R. Mas-Balleste, M. Costas, T. van den Berg and L. Que Jr., Chem. Eur. J., 12, 7489 (2006); https://doi.org/10.1002/chem.200600453
G. Roelfes, M. Lubben, R. Hage, L. Que Jr. and B.L. Feringa, Chem. Eur. J., 6, 2152 (2000); https://doi.org/10.1002/1521-3765(20000616)6:12<2152::AIDCHEM2152>3.0.CO;2-O
J. England, G.J.P. Britovsek, N. Rabadia and A.J.P. White, Inorg. Chem., 46, 3752 (2007); https://doi.org/10.1021/ic070062r
J. England, C.R. Davies, M. Banaru, A.J.P. White and G.J.P. Britovsek, Adv. Synth. Catal., 350, 883 (2008); https://doi.org/10.1002/adsc.200700462
G.J.P. Britovsek, J. England and A.J.P. White, Dalton Trans., 1399 (2006); https://doi.org/10.1039/b513886h
I. Prat, A. Company, T. Corona, T. Parella, X. Ribas and M. Costas, Inorg. Chem., 52, 9229 (2013); https://doi.org/10.1021/ic4004033
G. Olivo, O. Lanzalunga, L. Mandolini and S. Di Stefano, J. Org. Chem., 78, 11508 (2013); https://doi.org/10.1021/jo4020744
O. Cussó, I. Garcia-Bosch, X. Ribas, J. Lloret-Fillol and M. Costas, J. Am. Chem. Soc., 135, 14871 (2013); https://doi.org/10.1021/ja4078446
S. Sahu and D.P. Goldberg, J. Am. Chem. Soc., 138, 11410 (2016); https://doi.org/10.1021/jacs.6b05251
C. Krebs, D. Galonic Fujimori, C.T. Walsh and J.M. Bollinger Jr., Acc. Chem. Res., 40, 484 (2007); https://doi.org/10.1021/ar700066p
S. Sinnecker, N. Svensen, E.W. Barr, S. Ye, J.M. Bollinger Jr., F. Neese and C. Krebs, J. Am. Chem. Soc., 129, 6168 (2007); https://doi.org/10.1021/ja067899q
S. Paria, L. Que Jr. and T.K. Paine, Angew. Chem. Int. Ed., 50, 11129 (2011); https://doi.org/10.1002/anie.201103971
S. Chatterjee and T.K. Paine, Angew. Chem. Int. Ed., 54, 9338 (2015); https://doi.org/10.1002/anie.201502229
D. Sheet and T.K. Paine, Chem. Sci., 7, 5322 (2016); https://doi.org/10.1039/C6SC01476C
I. Siewert and C. Limberg, Angew. Chem. Int. Ed., 47, 7953 (2008); https://doi.org/10.1002/anie.200802955
D.H.R. Barton, R.S. Hay-Motherwell and W.B. Motherwell, Tetrahedron Lett., 24, 1979 (1983); https://doi.org/10.1016/S0040-4039(00)81821-3
D.H.R. Barton, J. Boivin, M. Gastiger, J. Morzycki, R.S. Hay-Motherwell, W.B. Motherwell, N. Ozbalik and K.M. Schwartzentruber, J. Chem. Soc., Perkin Trans. 1, 947 (1986); https://doi.org/10.1039/p19860000947
D.H.R. Barton and T. Li, Chem. Commun., 821 (1998); https://doi.org/10.1039/a800552d
K. Schroder, B. Join, A.J. Amali, K. Junge, X. Ribas, M. Costas and M. Beller, Angew. Chem. Int. Ed., 50, 1425 (2011); https://doi.org/10.1002/anie.201004623
Q.F. Cheng, X.Y. Xu, W.X. Ma, S.J. Yang and T.P. You, Chin. Chem. Lett., 16, 1467 (2005).
P. Stavropoulos, R. Celenligil-Cetin and A.E. Tapper, Acc. Chem. Res., 34, 745 (2001); https://doi.org/10.1021/ar000100+
A. Gonzalez-de-Castro, C.M. Robertson and J. Xiao, J. Am. Chem. Soc., 136, 8350 (2014); https://doi.org/10.1021/ja502167h
A. Gonzalez-de-Castro and J. Xiao, J. Am. Chem. Soc., 137, 8206 (2015); https://doi.org/10.1021/jacs.5b03956
S.O. Kim, C.V. Sastri, M.S. Seo, J. Kim and W. Nam, J. Am. Chem. Soc., 127, 4178 (2005); https://doi.org/10.1021/ja043083i
B. Muhldorf and R. Wolf, Angew. Chem. Int. Ed., 55, 427 (2016); https://doi.org/10.1002/anie.201507170
P. Hu, M. Tan, L. Cheng, H. Zhao, R. Feng, W.-J. Gu and W. Han, Nat. Commun., 10, 2425 (2019); https://doi.org/10.1038/s41467-019-10414-7
G.A. Molander and N. Ellis, Acc. Chem. Res., 40, 275 (2007); https://doi.org/10.1021/ar050199q
Y. Ishii, S. Sakaguchi and T. Iwahama, Adv. Synth. Catal., 343, 393 (2001); https://doi.org/10.1002/1615-4169(200107)343:5<393::AIDADSC393>3.0.CO;2-K
E. Gaster, S. Kozuch and D. Pappo, Angew. Chem. Int. Ed., 56, 5912 (2017); https://doi.org/10.1002/anie.201702511
M. Borrell, S. Gil-Caballero, M. Bietti and M. Costas, ACS Catal., 10, 4702 (2020); https://doi.org/10.1021/acscatal.9b05423
J.R. Griffin, C.I. Wendell, J.A. Garwin and M.C. White, J. Am. Chem. Soc., 139, 13624 (2017); https://doi.org/10.1021/jacs.7b07602
G.-Q. Chen, Z.-J. Xu, C.-Y. Zhou and C.-M. Che, Chem. Commun., 47, 10963 (2011); https://doi.org/10.1039/c1cc13574k
A. Dutta Chowdhury and G. Kumar Lahiri, Chem. Commun., 48, 3448 (2012); https://doi.org/10.1039/c2cc17889c
A.M. Balija, K.J. Stowers, M.J. Schultz and M.S. Sigman, Org. Lett., 8, 1121 (2006); https://doi.org/10.1021/ol053110p
A.D. Chowdhury, R. Ray and G.K. Lahiri, Chem. Commun., 48, 5497 (2012); https://doi.org/10.1039/c2cc32051g
J. Chen and C.-M. Che, Angew. Chem. Int. Ed., 43, 4950 (2004); https://doi.org/10.1002/anie.200460545
Y.-D. Du, C.-W. Tse, Z.-J. Xu, Y. Liu and C.-M. Che, Chem. Commun., 50, 12669 (2014); https://doi.org/10.1039/C4CC05972G
S.C. Hammer, G. Kubik, E. Watkins, S. Huang, H. Minges and F.H. Arnold, Science, 358, 215 (2017); https://doi.org/10.1126/science.aao1482
P.R.O. de Montellano, Cytochrome P-450 Structure, Mechanism and Biochemistry, Plenum Press: New York (1986).
D. Mansuy, Pure Appl. Chem., 59, 759 (1987); https://doi.org/10.1351/pac198759060759
I. Tabushi, M. Kodera and M. Yokoyama, J. Am. Chem. Soc., 107, 4466 (1985); https://doi.org/10.1021/ja00301a016
J. Gui, C.-M. Pan, Y. Jin, T. Qin, J.C. Lo, B.J. Lee, S.H. Spergel, M.E. Mertzman, W.J. Pitts, T.E. La Cruz, M.A. Schmidt, N. Darvatkar, S.R. Natarajan and P.S. Baran, Science, 348, 886 (2015); https://doi.org/10.1126/science.aab0245
J.C. Lo, J. Gui, Y. Yabe, C.-M. Pan and P.S. Baran, Nature, 516, 343 (2014); https://doi.org/10.1038/nature14006
J.C. Lo, D.Y. Kim, C.-M. Pan, J.T. Edwards, Y. Yabe, J.H. Gui, T. Qin, S. Gutiérrez, J. Giacoboni, M.W. Smith, P.L. Holland and P.S. Baran, J. Am. Chem. Soc., 139, 2484 (2017); https://doi.org/10.1021/jacs.6b13155
J.C. Lo, Y. Yabe and P.S. Baran, J. Am. Chem. Soc., 136, 1304 (2014); https://doi.org/10.1021/ja4117632
H.T. Dao, C. Li, Q. Michaudel, B.D. Maxwell and P.S. Baran, J. Am. Chem. Soc., 137, 8046 (2015); https://doi.org/10.1021/jacs.5b05144
S.W.M. Crossley, C. Obradors, R.M. Martinez and R.A. Shenvi, Chem. Rev., 116, 8912 (2016); https://doi.org/10.1021/acs.chemrev.6b00334
T. Hashimoto, D. Hirose and T. Taniguchi, Angew. Chem. Int. Ed., 53, 2730 (2014); https://doi.org/10.1002/anie.201308675
E.K. Leggans, T.J. Barker, K.K. Duncan and D.L. Boger, Org. Lett., 14, 1428 (2012); https://doi.org/10.1021/ol300173v
T. Taniguchi, N. Goto, A. Nishibata and H. Ishibashi, Org. Lett., 12, 112 (2009); https://doi.org/10.1021/ol902562j
T. Sugimori, S. Horike, S. Tsumura, M. Handa and K. Kasuga, Inorg. Chim. Acta, 283, 275 (1998); https://doi.org/10.1016/S0020-1693(98)00090-5
M. Takeuchi, M. Kodera, K. Kano and Z. Yoshida, J. Mol. Catal. Chem., 113, 51 (1996); https://doi.org/10.1016/S1381-1169(96)00047-7
B. Liu, F. Jin, T. Wang, X. Yuan and W. Han, Angew. Chem. Int. Ed., 56, 12712 (2017); https://doi.org/10.1002/anie.201707006
R.J. DeLuca, J.L. Edwards, L.D. Steffens, B.W. Michel, X. Qiao, C. Zhu, S.P. Cook and M.S. Sigman, J. Org. Chem., 78, 1682 (2013); https://doi.org/10.1021/jo302638v
B. Liu and W. Han, Synlett, 29, 383 (2018); https://doi.org/10.1055/s-0036-1591532
S. Srinivasan and W.T. Ford, J. Mol. Catal., 64, 291 (1991); https://doi.org/10.1016/0304-5102(91)85139-S
H. Subramanian and R.T. Koodali, React. Kinet. Catal. Lett., 95, 239 (2008); https://doi.org/10.1007/s11144-008-5352-0
X.T. Zhou, H. B. Ji, L. X. Pei, Y. B. She, J. C. Xu and L.F. Wang, Chin. J. Org. Chem., 27, 1039 (2007).
B. Meunier, Biomimetic Oxidations Mediated by Metal Complexes, Imperial College Press: London (2000).