Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Quantum Computational, Structural and Molecular Docking Analysis of 3,3,5,5-Tetramethyl-2-pyrrolidone: A DFT Approach
Corresponding Author(s) : S. Jeyavijayan
Asian Journal of Chemistry,
Vol. 34 No. 8 (2022): Vol 34 Issue 8, 2022
Abstract
The work focused on 3,3,5,5-tetramethyl-2-pyrrolidone (TM-2-P) to be a potential candidate for breast cancer diagnosis based on density functional theory (DFT) and molecular docking calculations. The DFT used to predict the molecular geometries, molecular electrostatic potential and electronic properties with B3LYP/6-31+G(d,p) method. The geometrical parameters (bond angle and bond length) from DFT model are correlated with experimental values. The computed and experimental vibrational assignments have been determined by FT-IR and FT-Raman. To determine the charge transfer of molecule, the frontier orbital analysis has been utilized. The molecular interaction and chemical reactivity of the molecule are calculated by using the molecular electrostatic potential maps. The molecular docking calculation has been performed to obtain the biochemical activities of TM-2-P against the breast cancer studies.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.H. Xie, Y.X. Chen and J.Y. Fang, Sig. Transduct. Target Ther., 5, 22 (2020); https://doi.org/10.1038/s41392-020-0116-z
- R.C. DeConti, Semin. Oncol., 39, 145 (2012); https://doi.org/10.1053/j.seminoncol.2012.01.002
- S.O. Souza, R.B. Lira, C.R.A. Cunha, B.S. Santos, A. Fontes and G. Pereira, Top. Curr. Chem., 379, 1 (2021); https://doi.org/10.1007/s41061-020-00313-7
- M.E. Vaschetto, B.A. Retamal and A.P. Monkman, J. Mol. Struct. THEOCHEM, 468, 209 (1999); https://doi.org/10.1016/S0166-1280(98)00624-1
- M.J. Frisch, G.W. Trucks, H.B. Schlegal, G.E. Scuseria, M.A. Robb, J.R. Cheesman, V.G. Zakrzewski, J.A. Montgomerg Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malich, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stetanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, GAUSSIAN 09, Revision A 11.4, Gaussian, Inc, Pittsburgh, PA (2009).
- T. Keith and J. Milam, Gauss View, Semichem Inc.; Shawnee Mission KS version 5, Ray Dennington (2009).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev., 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- M. Castellà-Ventura, E. Kassab, G. Buntinx and O. Poizat, Phys. Chem. Chem. Phys., 2, 4682 (2000); https://doi.org/10.1039/B006459I
- D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Electronic), John Wiley & Sons Ltd.: New York (2001).
- MOLVIB (V.7.0), Calculation of Harmonic Force Fields and Vibrational Modes of Molecules, QCPE Program No. 807 (2002).
- U.P. Mohan, S. Kunjiappan, P.B.T. Pichiah and S. Arunachalam, 3 Biotech., 11, 15 (2021); https://doi.org/10.1007/s13205-020-02530-9
- B.L. Narayana, D.P. Kishore, C. Balakumar, K.V. Rao, R. Kaur, A.R. Rao, J. Murthy and M. Ravikumar, Chem. Biol. Drug Des., 79, 674 (2012); https://doi.org/10.1111/j.1747-0285.2011.01277.x
- O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2009); https://doi.org/10.1002/jcc.21334
- Y.P. Liu, X.F. Zhang, K.J. Liu and Y. Liu, Acta Crystallogr. Sect. E Struct. Rep. Online, 62, o3672 (2006); https://doi.org/10.1107/S1600536806029849
- M.K. Ahmed and B.R. Henry, J. Phys. Chem., 90, 1737 (1986); https://doi.org/10.1021/j100400a002
- N.L. John, S. Abraham, D. Sajan, B.K. Sarojini and B. Narayana, J. Mol. Struct., 1222, 128939 (2020); https://doi.org/10.1016/j.molstruc.2020.128939
- V. Krishnakumar and R.J. Xavier, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 709 (2004); https://doi.org/10.1016/S1386-1425(03)00281-6
- V. Siva, S.S. Kumar, M. Suresh, M. Raja, S. Athimoolam and S.A. Bahadur, J. Mol. Struct., 1133, 163 (2017); https://doi.org/10.1016/j.molstruc.2016.11.088
- M. Arivazhagan, S. Jeyavijayan and J. Geethapriya, Spectrochim. Acta A Mol. Biomol. Spectrosc., 104, 14 (2013); https://doi.org/10.1016/j.saa.2012.11.032
- G. Sivaraj, N. Jayamani and V. Siva, J. Mol. Struct., 1240, 130530 (2021); https://doi.org/10.1016/j.molstruc.2021.130530
- Y. Erdogdu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 106, 25 (2013); https://doi.org/10.1016/j.saa.2012.12.043
- A. Regiec and P. Wojciechowski, J. Mol. Struct., 1196, 370 (2019); https://doi.org/10.1016/j.molstruc.2019.06.028
- S. Jeyavijayan, M. Ramuthai and P. Murugan, Asian J. Chem., 33, 2313 (2021); https://doi.org/10.14233/ajchem.2021.23308
- S. Jeyavijayan and P. Murugan, Asian J. Chem., 33, 83 (2020); https://doi.org/10.14233/ajchem.2021.22922
- B. Pramodh, P. Naresh, S. Naveen, N.K. Loganth, S. Ganguly, J. Panda, S. Murugesan, A.V. Raghu and I. Warad, Chem. Data Coll., 31, 100587 (2021); https://doi.org/10.1016/j.cdc.2020.100587
- K. Rastogi, M.A. Palafox, R.P. Tanwar and L. Mittal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 1987 (2002); https://doi.org/10.1016/S1386-1425(01)00650-3
- O. Noureddine, N. Issaoui, M. Medimagh, O. Al-Dossary and H. Marouani, J. King Saud Univ. Sci., 33, 101334 (2021); https://doi.org/10.1016/j.jksus.2020.101334
- M. Nsangou, Z. Dhaouadi, N. Jaïdane and Z. Ben Lakhdar, J. Mol. Struct. THEOCHEM, 819, 142 (2007); https://doi.org/10.1016/j.theochem.2007.05.038
- S.P.V. Chamundeeswari, E.J.J. Samuel and N. Sundaraganesan, Mol. Simul., 38, 987 (2012); https://doi.org/10.1080/08927022.2012.682279
- M.G. Sugiyama, G.D. Fairn and C.N. Antonescu, FASEB J., 34(S1), 1 (2020); https://doi.org/10.1096/fasebj.2020.34.s1.05687
References
Y.H. Xie, Y.X. Chen and J.Y. Fang, Sig. Transduct. Target Ther., 5, 22 (2020); https://doi.org/10.1038/s41392-020-0116-z
R.C. DeConti, Semin. Oncol., 39, 145 (2012); https://doi.org/10.1053/j.seminoncol.2012.01.002
S.O. Souza, R.B. Lira, C.R.A. Cunha, B.S. Santos, A. Fontes and G. Pereira, Top. Curr. Chem., 379, 1 (2021); https://doi.org/10.1007/s41061-020-00313-7
M.E. Vaschetto, B.A. Retamal and A.P. Monkman, J. Mol. Struct. THEOCHEM, 468, 209 (1999); https://doi.org/10.1016/S0166-1280(98)00624-1
M.J. Frisch, G.W. Trucks, H.B. Schlegal, G.E. Scuseria, M.A. Robb, J.R. Cheesman, V.G. Zakrzewski, J.A. Montgomerg Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malich, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stetanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, GAUSSIAN 09, Revision A 11.4, Gaussian, Inc, Pittsburgh, PA (2009).
T. Keith and J. Milam, Gauss View, Semichem Inc.; Shawnee Mission KS version 5, Ray Dennington (2009).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev., 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
M. Castellà-Ventura, E. Kassab, G. Buntinx and O. Poizat, Phys. Chem. Chem. Phys., 2, 4682 (2000); https://doi.org/10.1039/B006459I
D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Electronic), John Wiley & Sons Ltd.: New York (2001).
MOLVIB (V.7.0), Calculation of Harmonic Force Fields and Vibrational Modes of Molecules, QCPE Program No. 807 (2002).
U.P. Mohan, S. Kunjiappan, P.B.T. Pichiah and S. Arunachalam, 3 Biotech., 11, 15 (2021); https://doi.org/10.1007/s13205-020-02530-9
B.L. Narayana, D.P. Kishore, C. Balakumar, K.V. Rao, R. Kaur, A.R. Rao, J. Murthy and M. Ravikumar, Chem. Biol. Drug Des., 79, 674 (2012); https://doi.org/10.1111/j.1747-0285.2011.01277.x
O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2009); https://doi.org/10.1002/jcc.21334
Y.P. Liu, X.F. Zhang, K.J. Liu and Y. Liu, Acta Crystallogr. Sect. E Struct. Rep. Online, 62, o3672 (2006); https://doi.org/10.1107/S1600536806029849
M.K. Ahmed and B.R. Henry, J. Phys. Chem., 90, 1737 (1986); https://doi.org/10.1021/j100400a002
N.L. John, S. Abraham, D. Sajan, B.K. Sarojini and B. Narayana, J. Mol. Struct., 1222, 128939 (2020); https://doi.org/10.1016/j.molstruc.2020.128939
V. Krishnakumar and R.J. Xavier, Spectrochim. Acta A Mol. Biomol. Spectrosc., 60, 709 (2004); https://doi.org/10.1016/S1386-1425(03)00281-6
V. Siva, S.S. Kumar, M. Suresh, M. Raja, S. Athimoolam and S.A. Bahadur, J. Mol. Struct., 1133, 163 (2017); https://doi.org/10.1016/j.molstruc.2016.11.088
M. Arivazhagan, S. Jeyavijayan and J. Geethapriya, Spectrochim. Acta A Mol. Biomol. Spectrosc., 104, 14 (2013); https://doi.org/10.1016/j.saa.2012.11.032
G. Sivaraj, N. Jayamani and V. Siva, J. Mol. Struct., 1240, 130530 (2021); https://doi.org/10.1016/j.molstruc.2021.130530
Y. Erdogdu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 106, 25 (2013); https://doi.org/10.1016/j.saa.2012.12.043
A. Regiec and P. Wojciechowski, J. Mol. Struct., 1196, 370 (2019); https://doi.org/10.1016/j.molstruc.2019.06.028
S. Jeyavijayan, M. Ramuthai and P. Murugan, Asian J. Chem., 33, 2313 (2021); https://doi.org/10.14233/ajchem.2021.23308
S. Jeyavijayan and P. Murugan, Asian J. Chem., 33, 83 (2020); https://doi.org/10.14233/ajchem.2021.22922
B. Pramodh, P. Naresh, S. Naveen, N.K. Loganth, S. Ganguly, J. Panda, S. Murugesan, A.V. Raghu and I. Warad, Chem. Data Coll., 31, 100587 (2021); https://doi.org/10.1016/j.cdc.2020.100587
K. Rastogi, M.A. Palafox, R.P. Tanwar and L. Mittal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 1987 (2002); https://doi.org/10.1016/S1386-1425(01)00650-3
O. Noureddine, N. Issaoui, M. Medimagh, O. Al-Dossary and H. Marouani, J. King Saud Univ. Sci., 33, 101334 (2021); https://doi.org/10.1016/j.jksus.2020.101334
M. Nsangou, Z. Dhaouadi, N. Jaïdane and Z. Ben Lakhdar, J. Mol. Struct. THEOCHEM, 819, 142 (2007); https://doi.org/10.1016/j.theochem.2007.05.038
S.P.V. Chamundeeswari, E.J.J. Samuel and N. Sundaraganesan, Mol. Simul., 38, 987 (2012); https://doi.org/10.1080/08927022.2012.682279
M.G. Sugiyama, G.D. Fairn and C.N. Antonescu, FASEB J., 34(S1), 1 (2020); https://doi.org/10.1096/fasebj.2020.34.s1.05687