Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
DFT Calculations of 2,5-Diphenyl Furan against SARS-CoV-2 Mpro based on Molecular Docking Approach
Corresponding Author(s) : S. Jeyavijayan
Asian Journal of Chemistry,
Vol. 34 No. 7 (2022): Vol 34 Issue 7, 2022
Abstract
FTIR, FT-Raman and density functional theory (DFT) studies of 2,5-diphenyl furan (DPF) has been carried out to interpret the molecular structure, vibrational frequencies and its intensities. From the estimation, we obtained the HOMO-LUMO energy gap as 2.7113 eV, which is clearly significant the charge transfer occurs within the molecule. The intramolecular interaction and delocalization of the charges has been studied using NBO analysis. In addition, molecular electrostatic potential (MEP) calculations were also performed. The hydrogen bond interactions and binding energy of 2,5-diphenyl furan were estimated using molecular docking studies. The docking investigation was carried out to confirm the repressive nature of title molecule against SARS-CoV-2 main protease (Mpro) proteins.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Derosa, P. Maffioli, A. D’Angelo and F. Di Pierro, Phytother. Res., 35, 1230 (2021); https://doi.org/10.1002/ptr.6887
- S.T. Ngo, N. Quynh Anh Pham, L. Thi Le, D.-H. Pham and V.V. Vu, J. Chem. Inf. Model., 60, 5771 (2020); https://doi.org/10.1021/acs.jcim.0c00491
- G.R. Marshall, Annu. Rev. Pharmacol. Toxicol., 27, 193 (1987); https://doi.org/10.1146/annurev.pa.27.040187.001205
- M. Rani, M. Yusuf, S.A. Khan, P.P. Sahota and G. Pandove, Arab. J. Chem., 8, 174 (2015); https://doi.org/10.1016/j.arabjc.2010.10.036
- M. Rani, M. Yusuf and S.A. Khan, J. Saudi Chem. Soc., 16, 431 (2012); https://doi.org/10.1016/j.jscs.2011.02.012
- J.-Q. Huo, L.-Y. Ma, Z. Zhang, Z.-J. Fan, J.-L. Zhang, T.V. Beryozkina and V.A. Bakulev, Chin. Chem. Lett., 27, 1547 (2016); https://doi.org/10.1016/j.cclet.2016.06.019
- L.A. Anthony, D. Rajaraman, M. Shanmugam and K. Krishnasamy, Chem. Data Coll., 28, 100421 (2020); https://doi.org/10.1016/j.cdc.2020.100421
- M.R. Barros, T.M. Menezes, L.P. Da Silva, D.S. Pires, J.L. Princival, G. Seabra and J.L. Neves, Int. J. Biol. Macromol., 136, 1034 (2019); https://doi.org/10.1016/j.ijbiomac.2019.06.120
- K. Srikanth Kumar, A. Lakshmana Rao and D.R. Sekhara Reddy, Indian J. Pharm. Educ. Res., 55, 266 (2021); https://doi.org/10.5530/ijper.55.1.30
- M.E., Vaschetto, B.A. Retamal and A.P. Monkman, J. Mol. Struct. Theochem., 468, 209 (1999); https://doi.org/10.1016/S0166-1280(98)00624-1
- S. Premkumar, A. Jawahar, T. Mathavan, M.K. Dhas, V.G. Sathe and A.M.F. Benial, Spectrochim. Acta A Mol. Biomol. Spectrosc., 129, 74 (2014); https://doi.org/10.1016/j.saa.2014.02.147
- T. Lengauer and M. Rarey, Curr. Opin. Struct. Biol., 6, 402 (1996); https://doi.org/10.1016/S0959-440X(96)80061-3
- M.J. Frisch, G.W. Trucks, H.B. Schlegal, G.E. Scuseria, M.A. Robb, J.R. Cheesman, V.G. Zakrzewski, J.A. Montgomerg Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malich, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stetanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, GAUSSIAN 09, Revision A 11.4, Gaussian, Inc, Pittsburgh. PA. (2009).
- A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
- C. Lee, W. Yang and R.G. Parr, Phys. Rev., 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
- M. Castellà-Ventura, E. Kassab, G. Buntinx and O. Poizat, Physiol. Chem. Phys., 2, 4682 (2000); https://doi.org/10.1039/b006459i
- D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Electronic) John Wiley & Sons Ltd.: New York (2001).
- T. Keith and J. Milam, Gauss View, Version 5, Semichem Inc.; Shawnee Mission KS, Ray Dennington (2009).
- MOLVIB (V.7.0), Calculation of Harmonic Force Fields and Vibrational Modes of Molecules, QCPE Program No. 807 (2002).
- O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2009); https://doi.org/10.1002/jcc.21334
- U.P. Mohan, S. Kunjiappan, P.B. Tirupathi Pichiah and S. Arunachalam, 3 Biotech., 11, 15 (2021); https://doi.org/10.1007/s13205-020-02530-9
- B.L. Narayana, D. Pran Kishore, C. Balakumar, K.V. Rao, R. Kaur, A.R. Rao, J. Murthy and M. Ravikumar, Chem. Biol. Drug Des., 79, 674 (2012); https://doi.org/10.1111/j.1747-0285.2011.01277.x
- X.G. Meng and A. Wu, Acta Crystallogr. Sect. E Struct. Rep. Online, 61, o2808 (2005); https://doi.org/10.1107/S1600536805024554
- M.K. Ahmed and B.R. Henry, J. Phys. Chem., 90, 1737 (1986); https://doi.org/10.1021/j100400a002
- V. Siva, S.S. Kumar, M. Suresh, M. Raja, S. Athimoolam and S.A. Bahadur, J. Mol. Struct., 1133, 163 (2017); https://doi.org/10.1016/j.molstruc.2016.11.088
- V. Siva, S.S. Kumar, A. Shameem, M. Raja, S. Athimoolam and S.A. Bahadur, J. Mater. Sci. Mater. Electron., 28, 12484 (2017); https://doi.org/10.1007/s10854-017-7070-8
- G. Sivaraj, N. Jayamani and V. Siva, J. Mol. Struct., 1240, 130530 (2021); https://doi.org/10.1016/j.molstruc.2021.130530
- M. Arivazhagan, S. Jeyavijayan and J. Geethapriya, Spectrochim. Acta A Mol. Bio. Mol. Spectrosc., 104, 14 (2013); https://doi.org/10.1016/j.saa.2012.11.032
- S. Jeyavijayan, M. Ramuthai and P. Murugan, Asian J. Chem., 33, 2313 (2021); https://doi.org/10.14233/ajchem.2021.23308
- S. Jeyavijayan and P. Murugan, Asian J. Chem., 33, 83 (2020); https://doi.org/10.14233/ajchem.2021.22922
- N. Sundaraganesan, G. Elango, C. Meganathan, B. Karthikeyan and M. Kurt, Mol. Simul., 35, 705 (2009); https://doi.org/10.1080/08927020902873992
- B. Pramodh, P. Naresh, S. Naveen, N.K. Lokanath, S. Ganguly, J. Panda, S. Murugesan, A.V. Raghu and I. Warad, Chem. Data Coll., 31, 100587 (2021); https://doi.org/10.1016/j.cdc.2020.100587
- K. Rastogi, M.A. Palafox, R.P. Tanwar and L. Mittal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 1987 (2002); https://doi.org/10.1016/S1386-1425(01)00650-3
- J. Luque, J.M. Lopez and M. Orozco, Theor. Chem. Acc., 103, 343 (2000); https://doi.org/10.1007/s002149900013
- O. Noureddine, N. Issaoui and O. Al-Dossary, J. King Saud Univ. Sci., 33, 101248 (2021); https://doi.org/10.1016/j.jksus.2020.101248
- M. Nsangou, Z. Dhaouadi, N. Jaïdane and Z. Ben Lakhdar, J. Mol. Struct. THEOCHEM, 819, 142 (2007); https://doi.org/10.1016/j.theochem.2007.05.038
- S.P. Vijaya Chamundeeswari, E. James Jebaseelan Samuel and N. Sundaraganesan, Mol. Simul., 38, 987 (2012); https://doi.org/10.1080/08927022.2012.682279
- N.C. Wu, M. Yuan, H. Liu, C.-C.D. Lee, X. Zhu, S. Bangaru, J.L. Torres, T.G. Caniels, P.J.M. Brouwer, M.J. van Gils, R.W. Sanders, A.B. Ward and I.A. Wilson, Cell Rep., 33, 108274 (2020); https://doi.org/10.1016/j.celrep.2020.108274
References
G. Derosa, P. Maffioli, A. D’Angelo and F. Di Pierro, Phytother. Res., 35, 1230 (2021); https://doi.org/10.1002/ptr.6887
S.T. Ngo, N. Quynh Anh Pham, L. Thi Le, D.-H. Pham and V.V. Vu, J. Chem. Inf. Model., 60, 5771 (2020); https://doi.org/10.1021/acs.jcim.0c00491
G.R. Marshall, Annu. Rev. Pharmacol. Toxicol., 27, 193 (1987); https://doi.org/10.1146/annurev.pa.27.040187.001205
M. Rani, M. Yusuf, S.A. Khan, P.P. Sahota and G. Pandove, Arab. J. Chem., 8, 174 (2015); https://doi.org/10.1016/j.arabjc.2010.10.036
M. Rani, M. Yusuf and S.A. Khan, J. Saudi Chem. Soc., 16, 431 (2012); https://doi.org/10.1016/j.jscs.2011.02.012
J.-Q. Huo, L.-Y. Ma, Z. Zhang, Z.-J. Fan, J.-L. Zhang, T.V. Beryozkina and V.A. Bakulev, Chin. Chem. Lett., 27, 1547 (2016); https://doi.org/10.1016/j.cclet.2016.06.019
L.A. Anthony, D. Rajaraman, M. Shanmugam and K. Krishnasamy, Chem. Data Coll., 28, 100421 (2020); https://doi.org/10.1016/j.cdc.2020.100421
M.R. Barros, T.M. Menezes, L.P. Da Silva, D.S. Pires, J.L. Princival, G. Seabra and J.L. Neves, Int. J. Biol. Macromol., 136, 1034 (2019); https://doi.org/10.1016/j.ijbiomac.2019.06.120
K. Srikanth Kumar, A. Lakshmana Rao and D.R. Sekhara Reddy, Indian J. Pharm. Educ. Res., 55, 266 (2021); https://doi.org/10.5530/ijper.55.1.30
M.E., Vaschetto, B.A. Retamal and A.P. Monkman, J. Mol. Struct. Theochem., 468, 209 (1999); https://doi.org/10.1016/S0166-1280(98)00624-1
S. Premkumar, A. Jawahar, T. Mathavan, M.K. Dhas, V.G. Sathe and A.M.F. Benial, Spectrochim. Acta A Mol. Biomol. Spectrosc., 129, 74 (2014); https://doi.org/10.1016/j.saa.2014.02.147
T. Lengauer and M. Rarey, Curr. Opin. Struct. Biol., 6, 402 (1996); https://doi.org/10.1016/S0959-440X(96)80061-3
M.J. Frisch, G.W. Trucks, H.B. Schlegal, G.E. Scuseria, M.A. Robb, J.R. Cheesman, V.G. Zakrzewski, J.A. Montgomerg Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malich, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stetanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, GAUSSIAN 09, Revision A 11.4, Gaussian, Inc, Pittsburgh. PA. (2009).
A.D. Becke, J. Chem. Phys., 98, 5648 (1993); https://doi.org/10.1063/1.464913
C. Lee, W. Yang and R.G. Parr, Phys. Rev., 37, 785 (1988); https://doi.org/10.1103/PhysRevB.37.785
M. Castellà-Ventura, E. Kassab, G. Buntinx and O. Poizat, Physiol. Chem. Phys., 2, 4682 (2000); https://doi.org/10.1039/b006459i
D.C. Young, Computational Chemistry: A Practical Guide for Applying Techniques to Real World Problems (Electronic) John Wiley & Sons Ltd.: New York (2001).
T. Keith and J. Milam, Gauss View, Version 5, Semichem Inc.; Shawnee Mission KS, Ray Dennington (2009).
MOLVIB (V.7.0), Calculation of Harmonic Force Fields and Vibrational Modes of Molecules, QCPE Program No. 807 (2002).
O. Trott and A.J. Olson, J. Comput. Chem., 31, 455 (2009); https://doi.org/10.1002/jcc.21334
U.P. Mohan, S. Kunjiappan, P.B. Tirupathi Pichiah and S. Arunachalam, 3 Biotech., 11, 15 (2021); https://doi.org/10.1007/s13205-020-02530-9
B.L. Narayana, D. Pran Kishore, C. Balakumar, K.V. Rao, R. Kaur, A.R. Rao, J. Murthy and M. Ravikumar, Chem. Biol. Drug Des., 79, 674 (2012); https://doi.org/10.1111/j.1747-0285.2011.01277.x
X.G. Meng and A. Wu, Acta Crystallogr. Sect. E Struct. Rep. Online, 61, o2808 (2005); https://doi.org/10.1107/S1600536805024554
M.K. Ahmed and B.R. Henry, J. Phys. Chem., 90, 1737 (1986); https://doi.org/10.1021/j100400a002
V. Siva, S.S. Kumar, M. Suresh, M. Raja, S. Athimoolam and S.A. Bahadur, J. Mol. Struct., 1133, 163 (2017); https://doi.org/10.1016/j.molstruc.2016.11.088
V. Siva, S.S. Kumar, A. Shameem, M. Raja, S. Athimoolam and S.A. Bahadur, J. Mater. Sci. Mater. Electron., 28, 12484 (2017); https://doi.org/10.1007/s10854-017-7070-8
G. Sivaraj, N. Jayamani and V. Siva, J. Mol. Struct., 1240, 130530 (2021); https://doi.org/10.1016/j.molstruc.2021.130530
M. Arivazhagan, S. Jeyavijayan and J. Geethapriya, Spectrochim. Acta A Mol. Bio. Mol. Spectrosc., 104, 14 (2013); https://doi.org/10.1016/j.saa.2012.11.032
S. Jeyavijayan, M. Ramuthai and P. Murugan, Asian J. Chem., 33, 2313 (2021); https://doi.org/10.14233/ajchem.2021.23308
S. Jeyavijayan and P. Murugan, Asian J. Chem., 33, 83 (2020); https://doi.org/10.14233/ajchem.2021.22922
N. Sundaraganesan, G. Elango, C. Meganathan, B. Karthikeyan and M. Kurt, Mol. Simul., 35, 705 (2009); https://doi.org/10.1080/08927020902873992
B. Pramodh, P. Naresh, S. Naveen, N.K. Lokanath, S. Ganguly, J. Panda, S. Murugesan, A.V. Raghu and I. Warad, Chem. Data Coll., 31, 100587 (2021); https://doi.org/10.1016/j.cdc.2020.100587
K. Rastogi, M.A. Palafox, R.P. Tanwar and L. Mittal, Spectrochim. Acta A Mol. Biomol. Spectrosc., 58, 1987 (2002); https://doi.org/10.1016/S1386-1425(01)00650-3
J. Luque, J.M. Lopez and M. Orozco, Theor. Chem. Acc., 103, 343 (2000); https://doi.org/10.1007/s002149900013
O. Noureddine, N. Issaoui and O. Al-Dossary, J. King Saud Univ. Sci., 33, 101248 (2021); https://doi.org/10.1016/j.jksus.2020.101248
M. Nsangou, Z. Dhaouadi, N. Jaïdane and Z. Ben Lakhdar, J. Mol. Struct. THEOCHEM, 819, 142 (2007); https://doi.org/10.1016/j.theochem.2007.05.038
S.P. Vijaya Chamundeeswari, E. James Jebaseelan Samuel and N. Sundaraganesan, Mol. Simul., 38, 987 (2012); https://doi.org/10.1080/08927022.2012.682279
N.C. Wu, M. Yuan, H. Liu, C.-C.D. Lee, X. Zhu, S. Bangaru, J.L. Torres, T.G. Caniels, P.J.M. Brouwer, M.J. van Gils, R.W. Sanders, A.B. Ward and I.A. Wilson, Cell Rep., 33, 108274 (2020); https://doi.org/10.1016/j.celrep.2020.108274