Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Density Functional Theory and Antimicrobial Studies on tris(N-Furfuryl-N-benzyldithiocarbamato-S,S′)antimony(III)
Corresponding Author(s) : Sundaramoorthy Tamilvanan
Asian Journal of Chemistry,
Vol. 34 No. 7 (2022): Vol 34 Issue 7, 2022
Abstract
In present work, the complex, tris(N-furfuryl-N-benzyldithiocarbamato-S,S′)antimony(III) has been synthesized and characterized by elemental analysis, IR, 1H NMR, 13C NMR and biological studies. In the theoretical calculations, the DFT method with the B3LYP hybrid functional using the LAN2DZ basis set has been selected as a computational technique. The molecular structure and spectral are explained by Gaussian computational analysis theory (B3LYP) are found to be in correlation with the experimental data observed from the various spectrophotometric methods. 1H NMR and 13C NMR were performed by using GIAO (Gauge Independent Atomic Orbital) process with the B3LYP method and the LAN2DZ basis set and NMR chemical shifts related to TMS were compared. The molecular orbital calculations such as HOMO-LUMO energy gap, Mulliken population analysis and MEP surfaces have been calculated. Further, the synthesized antimony dithicarbamate complex has been evaluated for in vitro antimicrobial activity against various microorganisms using the disc diffusion method. The results represented that the studied molecule has shown the antimicrobial activity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- L.G. Oliveira, M.M. Silva, F.C.S. Paula, E.C. Pereira-Maia, C.L. Donnici, C.A. Simone, F. Frézard, E.N.S. Júnior and C. Demicheli, Molecules, 16, 10314 (2011); https://doi.org/10.3390/molecules161210314
- F. Frezard, C. Demicheli, K.C. Kato, P.G. Reis and E.H. LizarazoJaimes, Rev. Inorg. Chem., 33, 1 (2013); https://doi.org/10.1515/revic-2012-0006
- R.N. Duffin, M.V. Werrett and P.C. Andrews, Adv. Inorg. Chem., 75, 207 (2020); https://doi.org/10.1016/bs.adioch.2019.10.001
- S.K. Hadjikakou, D.C. Antoniadis, N. Hadjiliadis, M. Kubicki, J. Binolis, S. Karkabounas and K. Charalabopoulos, Inorg. Chim. Acta, 358, 2861 (2005); https://doi.org/10.1016/j.ica.2004.06.028
- E.R.T. Tiekink, Crit. Rev. Oncol. Hematol., 42, 217 (2002); https://doi.org/10.1016/S1040-8428(01)00217-7
- S. Yan, F. Li, K. Ding and H. Sun, J. Biol. Inorg. Chem., 8, 689 (2003); https://doi.org/10.1007/s00775-003-0468-1
- J.O. Adeyemi and D.C. Onwudiwe, Molecules, 25, 305 (2020); https://doi.org/10.3390/molecules25020305
- S.K. Hadjikakou, I.I. Ozturk, C.N. Banti, N. Kourkoumelis and N. Hadjiliadis, J. Inorg. Biochem., 153, 293 (2015); https://doi.org/10.1016/j.jinorgbio.2015.06.006
- K. Gleu and R. Schwab, Angew. Chem., 62, 320 (1950); https://doi.org/10.1002/ange.19500621307
- A. Hulanicki, Talanta, 14, 1371 (1967); https://doi.org/10.1016/0039-9140(67)80159-0
- A.T. Pilipenko and N.V. Ul’ko, Chem. Abstr., 50, 2356 (1956).
- E.R.T. Tiekink, Appl. Organomet. Chem., 22, 533 (2008); https://doi.org/10.1002/aoc.1441
- P.J. Heard, Prog. Inorg. Chem., 53, Chap. 1 (2005); https://doi.org/10.1002/0471725587.ch1
- D. Coucouvanis, Prog. Inorg. Chem., 26, 301 (1979).
- G. Hogarth, Prog. Inorg. Chem., 53, 71 (2005); https://doi.org/10.1002/0471725587.ch2
- J. Willemse, J.A. Cras, J.J. Steggerda and C.P. Keijzers, Struct. Bonding, 28, 83 (1976); https://doi.org/10.1007/3-540-07753-7_3
- J.J. Steggerda, J.A. Cras and J. Willemse, Recl. Trav. Chim. Pays Bas, 100, 41 (1981); https://doi.org/10.1002/recl.19811000202
- A.M. Bond and R.L. Martin, Coord. Chem. Rev., 54, 23 (1984); https://doi.org/10.1016/0010-8545(84)85017-1
- H.Y. Li, C.S. Lai, J.Z. Wu, P.C. Ho, D. de Vos and E.R.T. Tiekink, J. Inorg. Biochem., 101, 809 (2007); https://doi.org/10.1016/j.jinorgbio.2007.01.010
- R.Z. Sun, Y.C. Guo, W.M. Liu, S.Y. Chen and Y.Q. Feng, Chin. J. Struct. Chem., 31, 655 (2012).
- H.P. Chauhan, A.A. Bakshi and S. Bhatiya, Spectrochim. Acta A Mol. Biomol. Spectrosc., 81, 417 (2011); https://doi.org/10.1016/j.saa.2011.06.031
- H.P.S. Chauhan and U.P. Singh, Appl. Organomet. Chem., 21, 880 (2007); https://doi.org/10.1002/aoc.1290
- H. Yin, F. Li and D. Wang, J. Coord. Chem., 60, 1133 (2007); https://doi.org/10.1080/00958970601008846
- H.P.S. Chauhan, N.M. Shaik and U.P. Singh, Appl. Organomet. Chem., 20, 142 (2006); https://doi.org/10.1002/aoc.1013
- H.P.S. Chauhan, K. Kori, N.M. Shaik, S. Mathur and V. Huch, Polyhedron, 24, 89 (2005); https://doi.org/10.1016/j.poly.2004.10.007
- Y. Liu and E.R.T. Tiekink, Appl. Organomet. Chem., 18, 299 (2004); https://doi.org/10.1002/aoc.619
- H.-D. Yin and C.-H. Wang, Appl. Organomet. Chem., 18, 420 (2004); https://doi.org/10.1002/aoc.671
- H.-D. Yin, C.-H. Wang and Y. Wang, Appl. Organomet. Chem., 18, 199 (2004); https://doi.org/10.1002/aoc.597
- C.S. Lai and E.R.T. Tiekink, Appl. Organomet. Chem., 17, 195 (2003); https://doi.org/10.1002/aoc.384
- S.S. Garje and V.K. Jain, Coord. Chem. Rev., 236, 35 (2003); https://doi.org/10.1016/S0010-8545(02)00159-5
- J. Rodriguez-Castro, P. Dale, M.F. Mahon, K.C. Molloy and L.M. Peter, Chem. Mater., 19, 3219 (2007); https://doi.org/10.1021/cm070405j
- M.D. Regulacio, M.H. Pablico, J.A. Vasquez, P.N. Myers, S. Gentry, M. Prushan, S.W. Tam-Chang and S.L. Stoll, Inorg. Chem., 47, 1512 (2008); https://doi.org/10.1021/ic701974q
- J.D.E.T. Wilton-Ely, D. Solanki, E.R. Knight, K.B. Holt, A.L. Thompson and G. Hogarth, Inorg. Chem., 47, 9642 (2008); https://doi.org/10.1021/ic800398b
- M.D. Regulacio, N. Tomson and S.L. Stoll, Chem. Mater., 17, 3114 (2005); https://doi.org/10.1021/cm0478071
- M. Becht, T. Gerfin and K.H. Dahmen, Chem. Mater., 5, 137 (1993); https://doi.org/10.1021/cm00025a026
- C. Xu, T.H. Baum and A.L. Rheingold, Chem. Mater., 10, 2329 (1998); https://doi.org/10.1021/cm980346x
- G.C. Wang, Y.N. Lu, J. Xiao, L. Yu, H.B. Song, J.S. Li, J.R. Cui, R.Q. Wang and F.X. Ran, J. Organomet. Chem., 690, 151 (2005); https://doi.org/10.1016/j.jorganchem.2004.09.002
- O. Savadogo and K.C. Mandal, Sol. Energy Mater. Sol. Cells, 26, 117 (1992); https://doi.org/10.1016/0927-0248(92)90131-8
- X. Wang, K.F. Cai, F. Shang and S. Chen, J. Nanopart. Res., 15, 1541 (2013); https://doi.org/10.1007/s11051-013-1541-5
- O.S. Urgut, I.I. Ozturk, C.N. Banti, N. Kourkoumelis, M. Manoli, A.J. Tasiopoulos and S.K. Hadjikakou, Mater. Sci. Eng. C, 58, 396 (2016); https://doi.org/10.1016/j.msec.2015.08.030
- I.I. Ozturk, C.N. Banti, N. Kourkoumelis, M.J. Manos, A.J. Tasiopoulos, A.M. Owczarzak, M. Kubicki and S.K. Hadjikakou, Polyhedron, 67, 89 (2014); https://doi.org/10.1016/j.poly.2013.08.052
- I.I. Ozturk, S. Filimonova, S.K. Hadjikakou, N. Kourkoumelis, V. Dokorou, M.J. Manos, A.J. Tasiopoulos, M.M. Barsan, I.S. Butler, E.R. Milaeva, J. Balzarini and N. Hadjiliadis, Inorg. Chem., 49, 488 (2010); https://doi.org/10.1021/ic901442e
- I.I. Ozturk, O.S. Urgut, C.N. Banti, N. Kourkoumelis, A.M. Owczarzak, M. Kubicki, K. Charalabopoulos and S.K. Hadjikakou, Polyhedron, 52, 1403 (2013); https://doi.org/10.1016/j.poly.2012.04.038
- A.S. Levenson and V.C. Jordan, Cancer Res., 57, 3071 (1997).
- R. Paridaens, L. Biganzoli, P. Bruning, J.G. Klijn, T. Gamucci, S. Houston, R. Coleman, J. Schachter, A. Van Vreckem, R. Sylvester, A. Awada, J. Wildiers and M. Piccart, J. Clin. Oncol., 18, 724 (2000); https://doi.org/10.1200/JCO.2000.18.4.724
- J. Hoffmann, R. Bohlmann, N. Heinrich, H. Hofmeister, J. Kroll, H. Kunzer, R.B. Lichtner, Y. Nishino, K. Parczyk, G. Sauer, H. Gieschen, H.F. Ulbrich and M.R. Schneider, J. Natl. Cancer Inst., 96, 210 (2004); https://doi.org/10.1093/jnci/djh022
- D.Y. Lu, M. Huang, C.H. Xu, W.Y. Yang, C.X. Hu, L.P. Lin, L.J. Tong, M.H. Li, W. Lu, X.W. Zhang and J. Ding, BMC Pharmacol., 5, 11 (2005); https://doi.org/10.1186/1471-2210-5-11
- G.G. Mohamed, N.A. Ibrahim and H.E.A. Attia, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 610 (2009); https://doi.org/10.1016/j.saa.2008.10.051
- P.J. Rani and S. Thirumaran, Eur. J. Med. Chem., 62, 139 (2013); https://doi.org/10.1016/j.ejmech.2012.12.047
- M.A. Mumit, T.K. Pal, M.A. Alam, M.A. Islam, S. Paul and M.C. Sheikh, J. Mol. Struct., 1220, 128715 (2020); https://doi.org/10.1016/j.molstruc.2020.128715
- R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
- K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
- H. Chermette, J. Comput. Chem., 20, 129 (1999); https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AIDJCC13>3.0.CO;2-A
- K. Ramirez-Balderrama, E. Orrantia-Borunda and N. Flores-Holguin, J. Theor. Comput. Chem., 16, 1750019 (2017); https://doi.org/10.1142/S0219633617500195
- A. Zainuri, S. Arshad, N.C. Khalib and I.A. Razak, J. Mol. Cry. Liq. Cryst., 650, 87 (2017); https://doi.org/10.1080/15421406.2017.1328222
- K. Chaturvedi, A. Kumar and A. Mishra, Der Pharm. Chem., 6, 27 (2014).
- F. Bonati and R. Ugo, J. Organomet. Chem., 10, 257 (1967); https://doi.org/10.1016/S0022-328X(00)93085-7
- J.O. Hill and R.J. Magee, Rev. Inorg. Chem., 3, 141 (1981).
- J. Criado, I. Fernandez, B. Macias, J.M. Salas and M. Medarde, Inorg. Chim. Acta, 174, 67 (1990); https://doi.org/10.1016/S0020-1693(00)80280-7
- A.E. Aliev, D. Courtier-Murias and S. Zhou, J. Mol. Struct. THEOCHEM, 893, 1 (2009); https://doi.org/10.1016/j.theochem.2008.09.021
- H.L.M. Van Gaal, J.W. Diesveld, F.W. Pijpers and J.G.M. Van der Linden, Inorg. Chem., 18, 3251 (1979); https://doi.org/10.1021/ic50201a062
- V. Venkatachalam, K. Ramalingam, G. Bocelli and A. Cantoni, Inorg. Chim. Acta, 261, 23 (1997); https://doi.org/10.1016/S0020-1693(96)05573-9
- K.Y. Low, I. Baba, Y. Farina, A.H. Othman, A.R. Ibrahim, H.K. Fun and S.W. Ng, Main Group Met. Chem., 24, 451 (2001); https://doi.org/10.1515/MGMC.2001.24.7.451
- O.C. Monteiro, H.I.S. Nogueira, T. Trindade and M. Motevalli, Chem. Mater., 13, 2103 (2001); https://doi.org/10.1021/cm000973y
- V. Venkatachalam, K. Ramalingam, U. Casellato and R. Graziani, Polyhedron, 16, 1211 (1997); https://doi.org/10.1016/S0277-5387(96)00362-2
- C.S. Lai and E.R.T. Tiekink, Z. Kristallogr., 222, 532 (2007); https://doi.org/10.1524/zkri.2007.222.10.532
- R. Chauhan, J. Chaturvedi, M. Trivedi, J. Singh, K.C. Molloy, G. KociokKohn, D.P. Amalnerkar and A. Kumar, Inorg. Chim. Acta, 430, 168 (2015); https://doi.org/10.1016/j.ica.2015.03.007
- N.J. Mosey, A. Hu and T.K. Woo, Chem. Phys. Lett., 373, 498 (2003); https://doi.org/10.1016/S0009-2614(03)00538-4
- R.G. Pearson, Proc. Natl. Acad. Sci. USA, 83, 8440 (1986); https://doi.org/10.1073/pnas.83.22.8440
- H. Gokce, N. Ozturk, U. Ceylan, Y.B. Alpaslan and G. Alpaslan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 163, 170 (2016); https://doi.org/10.1016/j.saa.2016.03.041
- Z. Demircioglu, F.A. Ozdemir, O. Dayan, Z. Serbetci and N. Ozdemir, J. Mol. Struct., 1161, 122 (2018); https://doi.org/10.1016/j.molstruc.2018.02.063
- G.O. Tari, U. Ceylan, E. Agar and H. Eserci, J. Mol. Struct., 1126, 83 (2016); https://doi.org/10.1016/j.molstruc.2016.01.058
- Z.S. Sahin, G.K. Kantar, S. Sasmaz and O. Büyükgüngör, J. Mol. Struct., 1087, 104 (2015); https://doi.org/10.1016/j.molstruc.2015.01.039
- R.G. Parr, L. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
- T. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2
- R.G. Pearson, J. Am. Chem. Soc., 107, 6801 (1985); https://doi.org/10.1021/ja00310a009
- H. Beg, S.P. De, Sankar, L. Ash and A. Misra, Comput. Theoret. Chem., 984, 13 (2012); https://doi.org/10.1016/j.comptc.2011.12.018
- A. Srivastava, P. Rawat, P. Tandon and R.N. Singh, Comput. Theoret. Chem., 993, 80 (2012); https://doi.org/10.1016/j.comptc.2012.05.025
- R.K. Singh, S.K. Verma and P.D. Sharma, Int. J. Chem. Tech. Res., 3, 1571 (2011).
- M.J. Alam and S. Ahmad, Spectrochim. Acta A Mol. Biomol. Spectrosc., 96, 992 (2012); https://doi.org/10.1016/j.saa.2012.07.135
References
L.G. Oliveira, M.M. Silva, F.C.S. Paula, E.C. Pereira-Maia, C.L. Donnici, C.A. Simone, F. Frézard, E.N.S. Júnior and C. Demicheli, Molecules, 16, 10314 (2011); https://doi.org/10.3390/molecules161210314
F. Frezard, C. Demicheli, K.C. Kato, P.G. Reis and E.H. LizarazoJaimes, Rev. Inorg. Chem., 33, 1 (2013); https://doi.org/10.1515/revic-2012-0006
R.N. Duffin, M.V. Werrett and P.C. Andrews, Adv. Inorg. Chem., 75, 207 (2020); https://doi.org/10.1016/bs.adioch.2019.10.001
S.K. Hadjikakou, D.C. Antoniadis, N. Hadjiliadis, M. Kubicki, J. Binolis, S. Karkabounas and K. Charalabopoulos, Inorg. Chim. Acta, 358, 2861 (2005); https://doi.org/10.1016/j.ica.2004.06.028
E.R.T. Tiekink, Crit. Rev. Oncol. Hematol., 42, 217 (2002); https://doi.org/10.1016/S1040-8428(01)00217-7
S. Yan, F. Li, K. Ding and H. Sun, J. Biol. Inorg. Chem., 8, 689 (2003); https://doi.org/10.1007/s00775-003-0468-1
J.O. Adeyemi and D.C. Onwudiwe, Molecules, 25, 305 (2020); https://doi.org/10.3390/molecules25020305
S.K. Hadjikakou, I.I. Ozturk, C.N. Banti, N. Kourkoumelis and N. Hadjiliadis, J. Inorg. Biochem., 153, 293 (2015); https://doi.org/10.1016/j.jinorgbio.2015.06.006
K. Gleu and R. Schwab, Angew. Chem., 62, 320 (1950); https://doi.org/10.1002/ange.19500621307
A. Hulanicki, Talanta, 14, 1371 (1967); https://doi.org/10.1016/0039-9140(67)80159-0
A.T. Pilipenko and N.V. Ul’ko, Chem. Abstr., 50, 2356 (1956).
E.R.T. Tiekink, Appl. Organomet. Chem., 22, 533 (2008); https://doi.org/10.1002/aoc.1441
P.J. Heard, Prog. Inorg. Chem., 53, Chap. 1 (2005); https://doi.org/10.1002/0471725587.ch1
D. Coucouvanis, Prog. Inorg. Chem., 26, 301 (1979).
G. Hogarth, Prog. Inorg. Chem., 53, 71 (2005); https://doi.org/10.1002/0471725587.ch2
J. Willemse, J.A. Cras, J.J. Steggerda and C.P. Keijzers, Struct. Bonding, 28, 83 (1976); https://doi.org/10.1007/3-540-07753-7_3
J.J. Steggerda, J.A. Cras and J. Willemse, Recl. Trav. Chim. Pays Bas, 100, 41 (1981); https://doi.org/10.1002/recl.19811000202
A.M. Bond and R.L. Martin, Coord. Chem. Rev., 54, 23 (1984); https://doi.org/10.1016/0010-8545(84)85017-1
H.Y. Li, C.S. Lai, J.Z. Wu, P.C. Ho, D. de Vos and E.R.T. Tiekink, J. Inorg. Biochem., 101, 809 (2007); https://doi.org/10.1016/j.jinorgbio.2007.01.010
R.Z. Sun, Y.C. Guo, W.M. Liu, S.Y. Chen and Y.Q. Feng, Chin. J. Struct. Chem., 31, 655 (2012).
H.P. Chauhan, A.A. Bakshi and S. Bhatiya, Spectrochim. Acta A Mol. Biomol. Spectrosc., 81, 417 (2011); https://doi.org/10.1016/j.saa.2011.06.031
H.P.S. Chauhan and U.P. Singh, Appl. Organomet. Chem., 21, 880 (2007); https://doi.org/10.1002/aoc.1290
H. Yin, F. Li and D. Wang, J. Coord. Chem., 60, 1133 (2007); https://doi.org/10.1080/00958970601008846
H.P.S. Chauhan, N.M. Shaik and U.P. Singh, Appl. Organomet. Chem., 20, 142 (2006); https://doi.org/10.1002/aoc.1013
H.P.S. Chauhan, K. Kori, N.M. Shaik, S. Mathur and V. Huch, Polyhedron, 24, 89 (2005); https://doi.org/10.1016/j.poly.2004.10.007
Y. Liu and E.R.T. Tiekink, Appl. Organomet. Chem., 18, 299 (2004); https://doi.org/10.1002/aoc.619
H.-D. Yin and C.-H. Wang, Appl. Organomet. Chem., 18, 420 (2004); https://doi.org/10.1002/aoc.671
H.-D. Yin, C.-H. Wang and Y. Wang, Appl. Organomet. Chem., 18, 199 (2004); https://doi.org/10.1002/aoc.597
C.S. Lai and E.R.T. Tiekink, Appl. Organomet. Chem., 17, 195 (2003); https://doi.org/10.1002/aoc.384
S.S. Garje and V.K. Jain, Coord. Chem. Rev., 236, 35 (2003); https://doi.org/10.1016/S0010-8545(02)00159-5
J. Rodriguez-Castro, P. Dale, M.F. Mahon, K.C. Molloy and L.M. Peter, Chem. Mater., 19, 3219 (2007); https://doi.org/10.1021/cm070405j
M.D. Regulacio, M.H. Pablico, J.A. Vasquez, P.N. Myers, S. Gentry, M. Prushan, S.W. Tam-Chang and S.L. Stoll, Inorg. Chem., 47, 1512 (2008); https://doi.org/10.1021/ic701974q
J.D.E.T. Wilton-Ely, D. Solanki, E.R. Knight, K.B. Holt, A.L. Thompson and G. Hogarth, Inorg. Chem., 47, 9642 (2008); https://doi.org/10.1021/ic800398b
M.D. Regulacio, N. Tomson and S.L. Stoll, Chem. Mater., 17, 3114 (2005); https://doi.org/10.1021/cm0478071
M. Becht, T. Gerfin and K.H. Dahmen, Chem. Mater., 5, 137 (1993); https://doi.org/10.1021/cm00025a026
C. Xu, T.H. Baum and A.L. Rheingold, Chem. Mater., 10, 2329 (1998); https://doi.org/10.1021/cm980346x
G.C. Wang, Y.N. Lu, J. Xiao, L. Yu, H.B. Song, J.S. Li, J.R. Cui, R.Q. Wang and F.X. Ran, J. Organomet. Chem., 690, 151 (2005); https://doi.org/10.1016/j.jorganchem.2004.09.002
O. Savadogo and K.C. Mandal, Sol. Energy Mater. Sol. Cells, 26, 117 (1992); https://doi.org/10.1016/0927-0248(92)90131-8
X. Wang, K.F. Cai, F. Shang and S. Chen, J. Nanopart. Res., 15, 1541 (2013); https://doi.org/10.1007/s11051-013-1541-5
O.S. Urgut, I.I. Ozturk, C.N. Banti, N. Kourkoumelis, M. Manoli, A.J. Tasiopoulos and S.K. Hadjikakou, Mater. Sci. Eng. C, 58, 396 (2016); https://doi.org/10.1016/j.msec.2015.08.030
I.I. Ozturk, C.N. Banti, N. Kourkoumelis, M.J. Manos, A.J. Tasiopoulos, A.M. Owczarzak, M. Kubicki and S.K. Hadjikakou, Polyhedron, 67, 89 (2014); https://doi.org/10.1016/j.poly.2013.08.052
I.I. Ozturk, S. Filimonova, S.K. Hadjikakou, N. Kourkoumelis, V. Dokorou, M.J. Manos, A.J. Tasiopoulos, M.M. Barsan, I.S. Butler, E.R. Milaeva, J. Balzarini and N. Hadjiliadis, Inorg. Chem., 49, 488 (2010); https://doi.org/10.1021/ic901442e
I.I. Ozturk, O.S. Urgut, C.N. Banti, N. Kourkoumelis, A.M. Owczarzak, M. Kubicki, K. Charalabopoulos and S.K. Hadjikakou, Polyhedron, 52, 1403 (2013); https://doi.org/10.1016/j.poly.2012.04.038
A.S. Levenson and V.C. Jordan, Cancer Res., 57, 3071 (1997).
R. Paridaens, L. Biganzoli, P. Bruning, J.G. Klijn, T. Gamucci, S. Houston, R. Coleman, J. Schachter, A. Van Vreckem, R. Sylvester, A. Awada, J. Wildiers and M. Piccart, J. Clin. Oncol., 18, 724 (2000); https://doi.org/10.1200/JCO.2000.18.4.724
J. Hoffmann, R. Bohlmann, N. Heinrich, H. Hofmeister, J. Kroll, H. Kunzer, R.B. Lichtner, Y. Nishino, K. Parczyk, G. Sauer, H. Gieschen, H.F. Ulbrich and M.R. Schneider, J. Natl. Cancer Inst., 96, 210 (2004); https://doi.org/10.1093/jnci/djh022
D.Y. Lu, M. Huang, C.H. Xu, W.Y. Yang, C.X. Hu, L.P. Lin, L.J. Tong, M.H. Li, W. Lu, X.W. Zhang and J. Ding, BMC Pharmacol., 5, 11 (2005); https://doi.org/10.1186/1471-2210-5-11
G.G. Mohamed, N.A. Ibrahim and H.E.A. Attia, Spectrochim. Acta A Mol. Biomol. Spectrosc., 72, 610 (2009); https://doi.org/10.1016/j.saa.2008.10.051
P.J. Rani and S. Thirumaran, Eur. J. Med. Chem., 62, 139 (2013); https://doi.org/10.1016/j.ejmech.2012.12.047
M.A. Mumit, T.K. Pal, M.A. Alam, M.A. Islam, S. Paul and M.C. Sheikh, J. Mol. Struct., 1220, 128715 (2020); https://doi.org/10.1016/j.molstruc.2020.128715
R. Ditchfield, J. Chem. Phys., 56, 5688 (1972); https://doi.org/10.1063/1.1677088
K. Wolinski, J.F. Hinton and P. Pulay, J. Am. Chem. Soc., 112, 8251 (1990); https://doi.org/10.1021/ja00179a005
H. Chermette, J. Comput. Chem., 20, 129 (1999); https://doi.org/10.1002/(SICI)1096-987X(19990115)20:1<129::AIDJCC13>3.0.CO;2-A
K. Ramirez-Balderrama, E. Orrantia-Borunda and N. Flores-Holguin, J. Theor. Comput. Chem., 16, 1750019 (2017); https://doi.org/10.1142/S0219633617500195
A. Zainuri, S. Arshad, N.C. Khalib and I.A. Razak, J. Mol. Cry. Liq. Cryst., 650, 87 (2017); https://doi.org/10.1080/15421406.2017.1328222
K. Chaturvedi, A. Kumar and A. Mishra, Der Pharm. Chem., 6, 27 (2014).
F. Bonati and R. Ugo, J. Organomet. Chem., 10, 257 (1967); https://doi.org/10.1016/S0022-328X(00)93085-7
J.O. Hill and R.J. Magee, Rev. Inorg. Chem., 3, 141 (1981).
J. Criado, I. Fernandez, B. Macias, J.M. Salas and M. Medarde, Inorg. Chim. Acta, 174, 67 (1990); https://doi.org/10.1016/S0020-1693(00)80280-7
A.E. Aliev, D. Courtier-Murias and S. Zhou, J. Mol. Struct. THEOCHEM, 893, 1 (2009); https://doi.org/10.1016/j.theochem.2008.09.021
H.L.M. Van Gaal, J.W. Diesveld, F.W. Pijpers and J.G.M. Van der Linden, Inorg. Chem., 18, 3251 (1979); https://doi.org/10.1021/ic50201a062
V. Venkatachalam, K. Ramalingam, G. Bocelli and A. Cantoni, Inorg. Chim. Acta, 261, 23 (1997); https://doi.org/10.1016/S0020-1693(96)05573-9
K.Y. Low, I. Baba, Y. Farina, A.H. Othman, A.R. Ibrahim, H.K. Fun and S.W. Ng, Main Group Met. Chem., 24, 451 (2001); https://doi.org/10.1515/MGMC.2001.24.7.451
O.C. Monteiro, H.I.S. Nogueira, T. Trindade and M. Motevalli, Chem. Mater., 13, 2103 (2001); https://doi.org/10.1021/cm000973y
V. Venkatachalam, K. Ramalingam, U. Casellato and R. Graziani, Polyhedron, 16, 1211 (1997); https://doi.org/10.1016/S0277-5387(96)00362-2
C.S. Lai and E.R.T. Tiekink, Z. Kristallogr., 222, 532 (2007); https://doi.org/10.1524/zkri.2007.222.10.532
R. Chauhan, J. Chaturvedi, M. Trivedi, J. Singh, K.C. Molloy, G. KociokKohn, D.P. Amalnerkar and A. Kumar, Inorg. Chim. Acta, 430, 168 (2015); https://doi.org/10.1016/j.ica.2015.03.007
N.J. Mosey, A. Hu and T.K. Woo, Chem. Phys. Lett., 373, 498 (2003); https://doi.org/10.1016/S0009-2614(03)00538-4
R.G. Pearson, Proc. Natl. Acad. Sci. USA, 83, 8440 (1986); https://doi.org/10.1073/pnas.83.22.8440
H. Gokce, N. Ozturk, U. Ceylan, Y.B. Alpaslan and G. Alpaslan, Spectrochim. Acta A Mol. Biomol. Spectrosc., 163, 170 (2016); https://doi.org/10.1016/j.saa.2016.03.041
Z. Demircioglu, F.A. Ozdemir, O. Dayan, Z. Serbetci and N. Ozdemir, J. Mol. Struct., 1161, 122 (2018); https://doi.org/10.1016/j.molstruc.2018.02.063
G.O. Tari, U. Ceylan, E. Agar and H. Eserci, J. Mol. Struct., 1126, 83 (2016); https://doi.org/10.1016/j.molstruc.2016.01.058
Z.S. Sahin, G.K. Kantar, S. Sasmaz and O. Büyükgüngör, J. Mol. Struct., 1087, 104 (2015); https://doi.org/10.1016/j.molstruc.2015.01.039
R.G. Parr, L. Szentpaly and S. Liu, J. Am. Chem. Soc., 121, 1922 (1999); https://doi.org/10.1021/ja983494x
T. Koopmans, Physica, 1, 104 (1934); https://doi.org/10.1016/S0031-8914(34)90011-2
R.G. Pearson, J. Am. Chem. Soc., 107, 6801 (1985); https://doi.org/10.1021/ja00310a009
H. Beg, S.P. De, Sankar, L. Ash and A. Misra, Comput. Theoret. Chem., 984, 13 (2012); https://doi.org/10.1016/j.comptc.2011.12.018
A. Srivastava, P. Rawat, P. Tandon and R.N. Singh, Comput. Theoret. Chem., 993, 80 (2012); https://doi.org/10.1016/j.comptc.2012.05.025
R.K. Singh, S.K. Verma and P.D. Sharma, Int. J. Chem. Tech. Res., 3, 1571 (2011).
M.J. Alam and S. Ahmad, Spectrochim. Acta A Mol. Biomol. Spectrosc., 96, 992 (2012); https://doi.org/10.1016/j.saa.2012.07.135