Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Structural and Optical Properties of Dy3+ Doped with an Eulytite Type NaBaBi2(PO4)3 Phosphor for White Light Emitting Diodes
Corresponding Author(s) : S. Tamilselvan
Asian Journal of Chemistry,
Vol. 34 No. 7 (2022): Vol 34 Issue 7, 2022
Abstract
A series of NaBaBi(2-x)(PO4)3:xDy3+ eulytite type phosphors with varying doping concentrations were synthesized using a conventional solid-state reaction. The crystalline nature and phase formation of the phosphor were confirmed by the PXRD technique. FESEM was used to examine the surface morphology. UV-DRS measurements were used to quantify the band gap of the host and Dy3+ ion doped phosphors. The phosphors’ photoluminescence properties were thoroughly investigated. According to the excitation spectra, these phosphors show a strong absorption band in the near-ultraviolet (NUV) region, extending from 250 to 450 nm. Under the excitation of 352 nm, the peaks of the emission spectra of Dy3+ ions are located at 485 nm (blue), 575 nm (yellow) and 666 nm (red), corresponding to the magnetic dipole 4F9/2®6H15/2 transition, the electric dipole 4F9/2®6H13/2 transition and the 4F9/2®6H11/2 transition. The optimal concentration of Dy3+ doped phosphor is x = 0.075 and the major concentration quenching mechanism is accomplished by energy transfer between the nearest-neighbour ions. The critical transfer distance (Rc) is estimated to be about 19.01. The Commission International deI’Eclairage (CIE) of NaBaBi1.925(PO4)3:0.075Dy3+ phosphor was calculated to be (x = 0.341 and y = 0.374), which was very close to the “ideal white” (x = 0.33, y = 0.33). Present findings suggest that the phosphor might be a viable option for producing a white-light-emitting phosphor under NUV activation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Shang, C. Li and J. Lin, Chem. Soc. Rev., 43, 1372 (2014); https://doi.org/10.1039/C3CS60314H
- J. Hye Oh, S. Ji Yang and Y. Rag Do, Light Sci. Appl., 3, 141 (2014); https://doi.org/10.1038/lsa.2014.22
- C.F. Guo, W. Zhang, L. Luan, T. Chen, H. Cheng and D. Huang, Sens. Actuators B Chem., 133, 33 (2008); https://doi.org/10.1016/j.snb.2008.01.065
- H. Shanshan and T. Wanjun, J. Mater. Sci., 48, 5840 (2013); https://doi.org/10.1007/s10853-013-7379-5
- E.F. Schubert and J.K. Kim, Science, 308, 1274 (2005); https://doi.org/10.1126/science.1108712
- V.I. Pet’kov, A.S. Dmitrienko and A.I. Bokov, J. Therm. Anal. Calorim., 133, 199 (2018); https://doi.org/10.1007/s10973-017-6676-7
- M.M. Shang, D.L. Geng, D.M. Yang, X.J. Kang, Y. Zhang and J. Lin, Inorg. Chem., 52, 3102 (2013); https://doi.org/10.1021/ic3025759
- N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao and H. You, ChemPhysChem, 14, 192 (2013); https://doi.org/10.1002/cphc.201200836
- E.A. Rathnakumari, M. Jayachandiran and S.M.M. Kennedy, Optik, 186, 221 (2019); https://doi.org/10.1016/j.ijleo.2019.04.048
- Q. Xu, J. Sun, D. Cui, Q. Di and J. Zeng, J. Lumin., 158, 301 (2015); https://doi.org/10.1016/j.jlumin.2014.10.034
- Z. Yang, Y. Liu, C. Liu, F. Yang, Q. Yu, X. Li and F. Lu, Ceram. Int., 39, 7279 (2013); https://doi.org/10.1016/j.ceramint.2013.02.044
- Q. Liu, Y. Liu, Y. Ding, Z. Peng, X. Tian, Q. Yu and G. Dong, Ceram. Int., 40, 10125 (2014); https://doi.org/10.1016/j.ceramint.2014.01.137
- Y.W. Seo, S.H. Park, S.H. Chang, J.H. Jeong, K.H. Kim and J.S. Bae, Ceram. Int., 43, S0272 (2017); https://doi.org/10.1016/j.ceramint.2017.03.205
- A. Balakrishna and O.M. Ntwaeaborwa, Actuators B Chem., 242, 305 (2017); https://doi.org/10.1016/j.snb.2016.11.060
- K. Li, H. Lian, M. Shang and J. Lin, Dalton Trans., 44, 20542 (2015); https://doi.org/10.1039/C5DT03565A
- R.D. Shannon, Acta Crystallogr. A, 32, 751 (1976); https://doi.org/10.1107/S0567739476001551
- T. Yaba, R. Wangkhem and N.S. Singh, J. Alloys Compd., 843, 156022 (2020); https://doi.org/10.1016/j.jallcom.2020.156022
- M.M. Yawalkar, G.D. Zade, K.V. Dabre and S.J. Dhoble, Luminescence, 31, 1037 (2016); https://doi.org/10.1002/bio.3006
- Y. Deng, S. Yi, J. Huang, J. Xian and W. Zhao, Mater. Res. Bull., 57, 85 (2014); https://doi.org/10.1016/j.materresbull.2014.05.035
- R. Borja-Urby, L.A. Diaz-Torres, P. Salas, M. Vega-Gonzalez and C. Angeles-Chavez, Mater. Sci. Eng. B, 174, 169 (2010); https://doi.org/10.1016/j.mseb.2010.04.024
- X. Li, L. Guan, M. Sun, H. Liu, Z. Yang, Q. Guo and G. Fu, J. Lumin., 131, 1022 (2011); https://doi.org/10.1016/j.jlumin.2011.01.015
- P. You, G. Yin, X. Chen, B. Yue, Z. Huang, X. Liao and Y. Yao, Opt. Mater., 33, 1808 (2011); https://doi.org/10.1016/j.optmat.2011.06.018
- G. Seeta Rama Raju, H.C. Jung, J.Y. Park, C.M. Kanamadi, B.K. Moon, J.H. Jeong, S.-M. Son and J.H. Kim, J. Alloys Compd., 481, 730 (2009); https://doi.org/10.1016/j.jallcom.2009.03.095
- Y. Cao, Y. Liu, H. Feng and Y. Yang, Ceram. Int., 40, 15319 (2014); https://doi.org/10.1016/j.ceramint.2014.06.127
- G. Blasse, Phys. Lett. A, 28, 444 (1968); https://doi.org/10.1016/0375-9601(68)90486-6
- J. Du, D. Xu, X. Gao, J. Li, Z. Yang, X. Li and J. Sun, J. Mater. Sci.: Mater. Electron., 29, 573 (2018); https://doi.org/10.1007/s10854-017-7949-4
- G. Blasse and B.C. Grabmarier, Luminescent Materials, SpringerVerlag, Berlin, p. 99 (1994).
- L.G. Van Uitert, J. Electrochem. Soc., 114, 1048 (1967); https://doi.org/10.1149/1.2424184
- M. Yu, W. Zhang, G. Yan, S. Dai, Z. Qiu and L. Zhang, Ceram. Int., 44, 2563 (2018); https://doi.org/10.1016/j.ceramint.2017.11.012
References
M. Shang, C. Li and J. Lin, Chem. Soc. Rev., 43, 1372 (2014); https://doi.org/10.1039/C3CS60314H
J. Hye Oh, S. Ji Yang and Y. Rag Do, Light Sci. Appl., 3, 141 (2014); https://doi.org/10.1038/lsa.2014.22
C.F. Guo, W. Zhang, L. Luan, T. Chen, H. Cheng and D. Huang, Sens. Actuators B Chem., 133, 33 (2008); https://doi.org/10.1016/j.snb.2008.01.065
H. Shanshan and T. Wanjun, J. Mater. Sci., 48, 5840 (2013); https://doi.org/10.1007/s10853-013-7379-5
E.F. Schubert and J.K. Kim, Science, 308, 1274 (2005); https://doi.org/10.1126/science.1108712
V.I. Pet’kov, A.S. Dmitrienko and A.I. Bokov, J. Therm. Anal. Calorim., 133, 199 (2018); https://doi.org/10.1007/s10973-017-6676-7
M.M. Shang, D.L. Geng, D.M. Yang, X.J. Kang, Y. Zhang and J. Lin, Inorg. Chem., 52, 3102 (2013); https://doi.org/10.1021/ic3025759
N. Guo, W. Lü, Y. Jia, W. Lv, Q. Zhao and H. You, ChemPhysChem, 14, 192 (2013); https://doi.org/10.1002/cphc.201200836
E.A. Rathnakumari, M. Jayachandiran and S.M.M. Kennedy, Optik, 186, 221 (2019); https://doi.org/10.1016/j.ijleo.2019.04.048
Q. Xu, J. Sun, D. Cui, Q. Di and J. Zeng, J. Lumin., 158, 301 (2015); https://doi.org/10.1016/j.jlumin.2014.10.034
Z. Yang, Y. Liu, C. Liu, F. Yang, Q. Yu, X. Li and F. Lu, Ceram. Int., 39, 7279 (2013); https://doi.org/10.1016/j.ceramint.2013.02.044
Q. Liu, Y. Liu, Y. Ding, Z. Peng, X. Tian, Q. Yu and G. Dong, Ceram. Int., 40, 10125 (2014); https://doi.org/10.1016/j.ceramint.2014.01.137
Y.W. Seo, S.H. Park, S.H. Chang, J.H. Jeong, K.H. Kim and J.S. Bae, Ceram. Int., 43, S0272 (2017); https://doi.org/10.1016/j.ceramint.2017.03.205
A. Balakrishna and O.M. Ntwaeaborwa, Actuators B Chem., 242, 305 (2017); https://doi.org/10.1016/j.snb.2016.11.060
K. Li, H. Lian, M. Shang and J. Lin, Dalton Trans., 44, 20542 (2015); https://doi.org/10.1039/C5DT03565A
R.D. Shannon, Acta Crystallogr. A, 32, 751 (1976); https://doi.org/10.1107/S0567739476001551
T. Yaba, R. Wangkhem and N.S. Singh, J. Alloys Compd., 843, 156022 (2020); https://doi.org/10.1016/j.jallcom.2020.156022
M.M. Yawalkar, G.D. Zade, K.V. Dabre and S.J. Dhoble, Luminescence, 31, 1037 (2016); https://doi.org/10.1002/bio.3006
Y. Deng, S. Yi, J. Huang, J. Xian and W. Zhao, Mater. Res. Bull., 57, 85 (2014); https://doi.org/10.1016/j.materresbull.2014.05.035
R. Borja-Urby, L.A. Diaz-Torres, P. Salas, M. Vega-Gonzalez and C. Angeles-Chavez, Mater. Sci. Eng. B, 174, 169 (2010); https://doi.org/10.1016/j.mseb.2010.04.024
X. Li, L. Guan, M. Sun, H. Liu, Z. Yang, Q. Guo and G. Fu, J. Lumin., 131, 1022 (2011); https://doi.org/10.1016/j.jlumin.2011.01.015
P. You, G. Yin, X. Chen, B. Yue, Z. Huang, X. Liao and Y. Yao, Opt. Mater., 33, 1808 (2011); https://doi.org/10.1016/j.optmat.2011.06.018
G. Seeta Rama Raju, H.C. Jung, J.Y. Park, C.M. Kanamadi, B.K. Moon, J.H. Jeong, S.-M. Son and J.H. Kim, J. Alloys Compd., 481, 730 (2009); https://doi.org/10.1016/j.jallcom.2009.03.095
Y. Cao, Y. Liu, H. Feng and Y. Yang, Ceram. Int., 40, 15319 (2014); https://doi.org/10.1016/j.ceramint.2014.06.127
G. Blasse, Phys. Lett. A, 28, 444 (1968); https://doi.org/10.1016/0375-9601(68)90486-6
J. Du, D. Xu, X. Gao, J. Li, Z. Yang, X. Li and J. Sun, J. Mater. Sci.: Mater. Electron., 29, 573 (2018); https://doi.org/10.1007/s10854-017-7949-4
G. Blasse and B.C. Grabmarier, Luminescent Materials, SpringerVerlag, Berlin, p. 99 (1994).
L.G. Van Uitert, J. Electrochem. Soc., 114, 1048 (1967); https://doi.org/10.1149/1.2424184
M. Yu, W. Zhang, G. Yan, S. Dai, Z. Qiu and L. Zhang, Ceram. Int., 44, 2563 (2018); https://doi.org/10.1016/j.ceramint.2017.11.012