Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Iron Capped Spent Tea Leaves as Nano-Adsorbent for Removal of Eriochrome Black T from Aqueous Phase
Corresponding Author(s) : Amanullakhan Pathan
Asian Journal of Chemistry,
Vol. 34 No. 7 (2022): Vol 34 Issue 7, 2022
Abstract
In present study, the removal of Eriochrome black T dye by iron nanoparticles prepared through tea leaves extract has been investigated. Synthesized iron capped nanoparticles were characterized by FTIR spectroscopy, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM) and field emission gun scanning electron microscopy (FEG-SEM) with EDAX. The X-ray diffraction patterns revealed that iron nanoparticles exhibited an amorphous nature. Scanning electron microscopy exhibited clearly spherical shape of iron nanoparticles. The transmission electron microscopy (HR-TEM) of iron nanoparticles shows the particle size in the range of 30-40 nm. Further, the degradation of Eriochrome black T dye was studied. To obtain the optimal conditions for the dye degradation, the effect of various experimental parameters, like the proportion of adsorbent, pH, the concentration of dye and contact time on the rate of reaction was studied. Adsorptions of Eriochrome black T dye follow pseudo-first-order kinetics. It was found that the dye degradation showed best results in the presence of sunlight at a pH of 3, Eriochrome black T dye concentration 50 ppm with 0.60 g of adsorbent. At 29 ± 1 ºC, the maximum removal of dye was achieved within 90 min.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Monvisade and P. Siriphannon, Appl. Clay Sci., 42, 427 (2009); https://doi.org/10.1016/j.clay.2008.04.013
- N. Barka, M. Abdennouri and M.E. Makhfouk, J. Taiwan Inst. Chem. Eng., 42, 320 (2011); https://doi.org/10.1016/j.jtice.2010.07.004
- N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh and S. Agarwal, J. Colloid Interface Sci., 362, 457 (2011); https://doi.org/10.1016/j.jcis.2011.06.067
- S.H. Lin, R.S. Juang and Y.H. Wang, J. Hazard. Mater., 113, 195 (2004); https://doi.org/10.1016/j.jhazmat.2004.06.028
- A.N. Ejhieh and M. Khorsandi, J. Hazard. Mater., 176, 629 (2010); https://doi.org/10.1016/j.jhazmat.2009.11.077
- A.A. Ahmad and B.H. Hameed, J. Hazard. Mater., 175, 298 (2010); https://doi.org/10.1016/j.jhazmat.2009.10.003
- Ö. Gerçel, H.F. Gerçel, A.S. Koparal and Ü.B. Ögütveren, J. Hazard. Mater., 160, 668 (2008); https://doi.org/10.1016/j.jhazmat.2008.03.039
- J. Sun, L. Qiao, S. Sun and G. Wang, J. Hazard. Mater., 155, 312 (2008); https://doi.org/10.1016/j.jhazmat.2007.11.062
- J. García-Montaño, N. Ruiz, I. Munoz, X. Domenech, J.A. GarcíaHortal, F. Torrades and J. Peral, J. Hazard. Mater., 138, 218 (2006); https://doi.org/10.1016/j.jhazmat.2006.05.061
- W. Azmi, R.K. Sani and U.C. Banerjee, Enzyme Microb. Technol., 22, 185 (1998); https://doi.org/10.1016/S0141-0229(97)00159-2
- G. Crini, Bioresour. Technol., 97, 1061 (2006); https://doi.org/10.1016/j.biortech.2005.05.001
- T. Robinson, B. Chandran and P. Nigam, Water Res., 36, 2824 (2002); https://doi.org/10.1016/S0043-1354(01)00521-8
- M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv and Q. Zhang, J. Hazard. Mater., 211-212, 317 (2012); https://doi.org/10.1016/j.jhazmat.2011.10.016
- L.N. Shi, X. Zhang and Z.L. Chen, Water Res., 45, 886 (2011); https://doi.org/10.1016/j.watres.2010.09.025
- L. Huang, X. Weng, Z. Chen, M. Megharaj and R. Naidu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 801 (2014); https://doi.org/10.1016/j.saa.2013.09.054
- T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyaci, A.E. Eroglu, T.B. Scott and K.R. Hallam, Chem. Eng. J., 172, 258 (2011); https://doi.org/10.1016/j.cej.2011.05.103
- A.A. Pathan, K.R. Desai and C.P. Bhasin, Curr. Nanomater., 2, 169 (2018); https://doi.org/10.2174/2405461503666180420115141
- S. Vajapara, S. Patel and C. Bhasin, Int. J. Nano. Chem, 3, 33 (2017); https://doi.org/10.18576/ijnc/030203
- K.R. Desai, A.A. Pathan and C.P. Bhasin, Int. J. Nanomater. Chem., 3, 39 (2017); https://doi.org/10.18576/ijnc/030204
- A. Alinsafi, M. Da Motta, S. Le Bonté, M.N. Pons and A. Benhammou, Dyes Pigments, 69, 31 (2006); https://doi.org/10.1016/j.dyepig.2005.02.014
- H. Selcuk, Dyes Pigments, 64, 217 (2005); https://doi.org/10.1016/j.dyepig.2004.03.020
- J.S. Wu, C.H. Liu, K.H. Chu and S.Y. Suen, J. Membr. Sci., 309, 239 (2008); https://doi.org/10.1016/j.memsci.2007.10.035
- L. Fan, Y. Zhou, W. Yang, G. Chen and F. Yang, Dyes Pigments, 76, 440 (2008); https://doi.org/10.1016/j.dyepig.2006.09.013
- G. Sudarjanto, B. Keller-Lehmann and J. Keller, J. Hazard. Mater., 138, 160 (2006); https://doi.org/10.1016/j.jhazmat.2006.05.054
- B.H. Hameed and F.B.M. Daud, Chem. Eng. J., 139, 48 (2008); https://doi.org/10.1016/j.cej.2007.07.089
- F.C. Wu and R.L. Tseng, J. Hazard. Mater., 152, 1256 (2008); https://doi.org/10.1016/j.jhazmat.2007.07.109
- P. Panneerselvam, N. Morad and K.A. Tan, J. Hazard. Mater., 186, 160 (2011); https://doi.org/10.1016/j.jhazmat.2010.10.102
- S. Lunge, S. Singh and A. Sinha, J. Magn. Magn. Mater., 356, 21 (2014); https://doi.org/10.1016/j.jmmm.2013.12.008
- V. Smuleac, R. Varma, S. Sikdar and D. Bhattacharyya, J. Membr. Sci., 379, 131 (2011); https://doi.org/10.1016/j.memsci.2011.05.054
- Y. Kuang, Q. Wang, Z. Chen, M. Megharaj and R. Naidu, J. Colloid Interface Sci., 410, 67 (2013); https://doi.org/10.1016/j.jcis.2013.08.020
- O.V. Kharissova, H.R. Dias, B.I. Kharisov, B.O. Pérez and V.M.J. Pérez, Trends Biotechnol., 31, 240 (2013); https://doi.org/10.1016/j.tibtech.2013.01.003
- V.V. Makarov, S.S. Makarova, A.J. Love, O.V. Sinitsyna, A.O. Dudnik, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Langmuir, 30, 5982 (2014); https://doi.org/10.1021/la5011924
- J. Lin, X. Weng, X. Jin, M. Megharaj, R. Naidu and Z. Chen, RSC Adv., 5, 70874 (2015); https://doi.org/10.1039/C5RA10629J
- S.J. Patel, S. Vajapara and C.P. Bhasin, Chem. Sci. Trans., 9, 35 (2020); https://doi.org/10.7598/cst2020.1710
- Z.X. Chen, X.Y. Jin, Z. Chen, M. Megharaj and R. Naidu, J. Colloid Interface Sci., 363, 601 (2011); https://doi.org/10.1016/j.jcis.2011.07.057
- Z.X. Chen, Y. Cheng, Z. Chen, M. Megharaj and R. Naidu, J. Nanopart. Res., 14, 1 (2012).
- M. Colon and C. Nerin, J. Agric. Food Chem., 60, 9842 (2012); https://doi.org/10.1021/jf302477y
- G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda and R.S. Varma, J. Mater. Chem., 19, 8671 (2009); https://doi.org/10.1039/b909148c
- A. Gogoi, M. Navgire, K.C. Sarma and P. Gogoi, Mater. Chem. Phys., 231, 233 (2019); https://doi.org/10.1016/j.matchemphys.2019.04.013
- G. Mamba, X.Y. Mbianda and A.K. Mishra, Mater. Chem. Phys., 149- 150, 734 (2015); https://doi.org/10.1016/j.matchemphys.2014.11.035
- J. Kaur and S. Singhal, Superlatt. Microstruct., 83, 9 (2015); https://doi.org/10.1016/j.spmi.2015.03.022
- M. Karimi-Shamsabadi, M. Behpour, A.K. Babaheidari and Z. Saberi, J. Photochem. Photobiol. Chem., 346, 133 (2017); https://doi.org/10.1016/j.jphotochem.2017.05.038
- M.D.G. de Luna, E.D. Flores, D.A.D. Genuino, C.M. Futalan and M.W. Wan, J. Taiwan Inst. Chem. Eng., 44, 646 (2013); https://doi.org/10.1016/j.jtice.2013.01.010
- M. Rani, J. Yadav, Keshu and U. Shanker, J. Colloid Interface Sci., 601, 689 (2021); https://doi.org/10.1016/j.jcis.2021.05.152
- R. Nayak, F.A. Ali, D.K. Mishra, D. Ray, V.K. Aswal, S.K. Sahoo and B. Nanda, J. Mater. Res. Technol., 9, 11045 (2020); https://doi.org/10.1016/j.jmrt.2020.07.100
References
P. Monvisade and P. Siriphannon, Appl. Clay Sci., 42, 427 (2009); https://doi.org/10.1016/j.clay.2008.04.013
N. Barka, M. Abdennouri and M.E. Makhfouk, J. Taiwan Inst. Chem. Eng., 42, 320 (2011); https://doi.org/10.1016/j.jtice.2010.07.004
N. Mohammadi, H. Khani, V.K. Gupta, E. Amereh and S. Agarwal, J. Colloid Interface Sci., 362, 457 (2011); https://doi.org/10.1016/j.jcis.2011.06.067
S.H. Lin, R.S. Juang and Y.H. Wang, J. Hazard. Mater., 113, 195 (2004); https://doi.org/10.1016/j.jhazmat.2004.06.028
A.N. Ejhieh and M. Khorsandi, J. Hazard. Mater., 176, 629 (2010); https://doi.org/10.1016/j.jhazmat.2009.11.077
A.A. Ahmad and B.H. Hameed, J. Hazard. Mater., 175, 298 (2010); https://doi.org/10.1016/j.jhazmat.2009.10.003
Ö. Gerçel, H.F. Gerçel, A.S. Koparal and Ü.B. Ögütveren, J. Hazard. Mater., 160, 668 (2008); https://doi.org/10.1016/j.jhazmat.2008.03.039
J. Sun, L. Qiao, S. Sun and G. Wang, J. Hazard. Mater., 155, 312 (2008); https://doi.org/10.1016/j.jhazmat.2007.11.062
J. García-Montaño, N. Ruiz, I. Munoz, X. Domenech, J.A. GarcíaHortal, F. Torrades and J. Peral, J. Hazard. Mater., 138, 218 (2006); https://doi.org/10.1016/j.jhazmat.2006.05.061
W. Azmi, R.K. Sani and U.C. Banerjee, Enzyme Microb. Technol., 22, 185 (1998); https://doi.org/10.1016/S0141-0229(97)00159-2
G. Crini, Bioresour. Technol., 97, 1061 (2006); https://doi.org/10.1016/j.biortech.2005.05.001
T. Robinson, B. Chandran and P. Nigam, Water Res., 36, 2824 (2002); https://doi.org/10.1016/S0043-1354(01)00521-8
M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv and Q. Zhang, J. Hazard. Mater., 211-212, 317 (2012); https://doi.org/10.1016/j.jhazmat.2011.10.016
L.N. Shi, X. Zhang and Z.L. Chen, Water Res., 45, 886 (2011); https://doi.org/10.1016/j.watres.2010.09.025
L. Huang, X. Weng, Z. Chen, M. Megharaj and R. Naidu, Spectrochim. Acta A Mol. Biomol. Spectrosc., 117, 801 (2014); https://doi.org/10.1016/j.saa.2013.09.054
T. Shahwan, S. Abu Sirriah, M. Nairat, E. Boyaci, A.E. Eroglu, T.B. Scott and K.R. Hallam, Chem. Eng. J., 172, 258 (2011); https://doi.org/10.1016/j.cej.2011.05.103
A.A. Pathan, K.R. Desai and C.P. Bhasin, Curr. Nanomater., 2, 169 (2018); https://doi.org/10.2174/2405461503666180420115141
S. Vajapara, S. Patel and C. Bhasin, Int. J. Nano. Chem, 3, 33 (2017); https://doi.org/10.18576/ijnc/030203
K.R. Desai, A.A. Pathan and C.P. Bhasin, Int. J. Nanomater. Chem., 3, 39 (2017); https://doi.org/10.18576/ijnc/030204
A. Alinsafi, M. Da Motta, S. Le Bonté, M.N. Pons and A. Benhammou, Dyes Pigments, 69, 31 (2006); https://doi.org/10.1016/j.dyepig.2005.02.014
H. Selcuk, Dyes Pigments, 64, 217 (2005); https://doi.org/10.1016/j.dyepig.2004.03.020
J.S. Wu, C.H. Liu, K.H. Chu and S.Y. Suen, J. Membr. Sci., 309, 239 (2008); https://doi.org/10.1016/j.memsci.2007.10.035
L. Fan, Y. Zhou, W. Yang, G. Chen and F. Yang, Dyes Pigments, 76, 440 (2008); https://doi.org/10.1016/j.dyepig.2006.09.013
G. Sudarjanto, B. Keller-Lehmann and J. Keller, J. Hazard. Mater., 138, 160 (2006); https://doi.org/10.1016/j.jhazmat.2006.05.054
B.H. Hameed and F.B.M. Daud, Chem. Eng. J., 139, 48 (2008); https://doi.org/10.1016/j.cej.2007.07.089
F.C. Wu and R.L. Tseng, J. Hazard. Mater., 152, 1256 (2008); https://doi.org/10.1016/j.jhazmat.2007.07.109
P. Panneerselvam, N. Morad and K.A. Tan, J. Hazard. Mater., 186, 160 (2011); https://doi.org/10.1016/j.jhazmat.2010.10.102
S. Lunge, S. Singh and A. Sinha, J. Magn. Magn. Mater., 356, 21 (2014); https://doi.org/10.1016/j.jmmm.2013.12.008
V. Smuleac, R. Varma, S. Sikdar and D. Bhattacharyya, J. Membr. Sci., 379, 131 (2011); https://doi.org/10.1016/j.memsci.2011.05.054
Y. Kuang, Q. Wang, Z. Chen, M. Megharaj and R. Naidu, J. Colloid Interface Sci., 410, 67 (2013); https://doi.org/10.1016/j.jcis.2013.08.020
O.V. Kharissova, H.R. Dias, B.I. Kharisov, B.O. Pérez and V.M.J. Pérez, Trends Biotechnol., 31, 240 (2013); https://doi.org/10.1016/j.tibtech.2013.01.003
V.V. Makarov, S.S. Makarova, A.J. Love, O.V. Sinitsyna, A.O. Dudnik, I.V. Yaminsky, M.E. Taliansky and N.O. Kalinina, Langmuir, 30, 5982 (2014); https://doi.org/10.1021/la5011924
J. Lin, X. Weng, X. Jin, M. Megharaj, R. Naidu and Z. Chen, RSC Adv., 5, 70874 (2015); https://doi.org/10.1039/C5RA10629J
S.J. Patel, S. Vajapara and C.P. Bhasin, Chem. Sci. Trans., 9, 35 (2020); https://doi.org/10.7598/cst2020.1710
Z.X. Chen, X.Y. Jin, Z. Chen, M. Megharaj and R. Naidu, J. Colloid Interface Sci., 363, 601 (2011); https://doi.org/10.1016/j.jcis.2011.07.057
Z.X. Chen, Y. Cheng, Z. Chen, M. Megharaj and R. Naidu, J. Nanopart. Res., 14, 1 (2012).
M. Colon and C. Nerin, J. Agric. Food Chem., 60, 9842 (2012); https://doi.org/10.1021/jf302477y
G.E. Hoag, J.B. Collins, J.L. Holcomb, J.R. Hoag, M.N. Nadagouda and R.S. Varma, J. Mater. Chem., 19, 8671 (2009); https://doi.org/10.1039/b909148c
A. Gogoi, M. Navgire, K.C. Sarma and P. Gogoi, Mater. Chem. Phys., 231, 233 (2019); https://doi.org/10.1016/j.matchemphys.2019.04.013
G. Mamba, X.Y. Mbianda and A.K. Mishra, Mater. Chem. Phys., 149- 150, 734 (2015); https://doi.org/10.1016/j.matchemphys.2014.11.035
J. Kaur and S. Singhal, Superlatt. Microstruct., 83, 9 (2015); https://doi.org/10.1016/j.spmi.2015.03.022
M. Karimi-Shamsabadi, M. Behpour, A.K. Babaheidari and Z. Saberi, J. Photochem. Photobiol. Chem., 346, 133 (2017); https://doi.org/10.1016/j.jphotochem.2017.05.038
M.D.G. de Luna, E.D. Flores, D.A.D. Genuino, C.M. Futalan and M.W. Wan, J. Taiwan Inst. Chem. Eng., 44, 646 (2013); https://doi.org/10.1016/j.jtice.2013.01.010
M. Rani, J. Yadav, Keshu and U. Shanker, J. Colloid Interface Sci., 601, 689 (2021); https://doi.org/10.1016/j.jcis.2021.05.152
R. Nayak, F.A. Ali, D.K. Mishra, D. Ray, V.K. Aswal, S.K. Sahoo and B. Nanda, J. Mater. Res. Technol., 9, 11045 (2020); https://doi.org/10.1016/j.jmrt.2020.07.100