Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Comparison of the Properties of Biodiesel-Bioethanol-Diesel Blended Fuel
Corresponding Author(s) : Udara S.P.R. Arachchige
Asian Journal of Chemistry,
Vol. 34 No. 7 (2022): Vol 34 Issue 7, 2022
Abstract
Energy production relies on finite fossil fuels and is usually regarded as the primary source of hazardous emissions and global warming. As a result, much attention has been dedicated to biofuel as a fuel for engine alternatives. Biofuel is now primarily utilized in blends with fossil diesel. As a result, this study was focused on adding bioethanol and biodiesel to fossil diesel. Biodiesel was manufactured by transesterification from waste cooking oil, while bioethanol was made through banana fermentation. The physical properties such as density, kinematic viscosity, flashpoint, and cetane index of fossil diesel-biodiesel-bioethanol blends were compared with fossil diesel fuel in laboratory experiments. When added, bioethanol was found to degrade the physical properties of blended fuels substantially. The substitution of bioethanol for fossil diesel resulted in a significant reduction of hazardous emissions. The assessment of flue gas emissions indicated a considerable reduction in CO2, CO, hydrocarbon (HC) and NOx emissions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- U.S.P.R. Arachchige, K.L. Wijenayake, K.A.V. Miyuranga, D. Thilakarathne, N.A. Weerasekara and R.A. Jayasinghe, Int. J. Scient. Eng. Sci., 5, 1 (2021).
- F. Perera, Int. J. Environ. Res. Public Health, 15, 16 (2018); https://doi.org/10.3390/ijerph15010016
- E.A. Marais, R.F. Silvern, A. Vodonos, E. Dupin, A.S. Bockarie, L.J. Mickley and J. Schwartz, Environ. Sci. Technol., 53, 13524 (2019); https://doi.org/10.1021/acs.est.9b04958
- R. Blazy, J. Blachut, A. Ciepiela, R. Labuz and R. Papiez, Front. Energy Res., 9, 767418 (2021); https://doi.org/10.1016/j.enpol.2019.110907
- D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner and R. Gorini, Energy Strategy Rev., 24, 38 (2019); https://doi.org/10.1016/j.esr.2019.01.006
- A. Piwowar and M. Dzikuc, Energies, 12, 3558 (2019); https://doi.org/10.3390/en12183558
- L. Lakatos, G. Hevessy and J. Kovács, World Futures, 67, 395 (2011); https://doi.org/10.1080/02604020903021776
- M.H. Hassan and M.A. Kalam, Procedia Eng., 56, 39 (2013); https://doi.org/10.1016/j.proeng.2013.03.087
- U.S.P.R. Arachchige, K.A.V. Miyuranga, D. Thilakarathne, N.A. Weerasekara and R.A. Jayasinghe, Int. J. Scient. Eng. Sci., 5, 28 (2021).
- A. Gupta and J. Verma, Renew. Sustain. Energy Rev., 41, 550 (2015); https://doi.org/10.1016/j.rser.2014.08.032
- P. Kwanchareon, A. Luengnaruemitchai and S. Jai-In, Fuel, 86, 1053 (2007); https://doi.org/10.1016/j.fuel.2006.09.034
- S. Shahir, H. Masjuki, M. Kalam, A. Imran, I. Fattah and A. Sanjid, Renew. Sustain. Energy Rev., 32, 379 (2014); https://doi.org/10.1016/j.rser.2014.01.029
- D. Li, H. Zhen, L. Xingcai, Z. Wu-gao and Y. Jian-guang, Renew. Energy, 30, 967 (2005); https://doi.org/10.1016/j.renene.2004.07.010
- N. Burnete, N. Filip and I. Barabás, Romanian J. Automotive Eng., 21, 89 (2015).
- A. Hansen, Q. Zhang and P. Lyne, Bioresour. Technol., 96, 277 (2005); https://doi.org/10.1016/j.biortech.2004.04.007
- H. Kim and S. Park, Fuel, 182, 541 (2016); https://doi.org/10.1016/j.fuel.2016.06.001
- N. Al-Esawi, M. Al Qubeissi and R. Kolodnytska, Energies, 12, 1804 (2019); https://doi.org/10.3390/en12091804
- O. Ogunkunle and N.A. Ahmed, Energy Rep., 5, 1560 (2019); https://doi.org/10.1016/j.egyr.2019.10.028
- U.S.P.R. Arachchige, K.A.V. Miyuranga, D. Thilakarathne, R.A. Jayasinghe and N.A. Weerasekara, Nat. Environ. Pollut. Technol., 20, 1973 (2021); https://doi.org/10.46488/NEPT.2021.v20i05.013
- C. Beatrice, P. Napolitano and C. Guido, Appl. Energy, 113, 373 (2014); https://doi.org/10.1016/j.apenergy.2013.07.058
- Q. Fang, J. Fang, J. Zhuang and Z. Huang, Appl. Therm. Eng., 54, 541 (2013); https://doi.org/10.1016/j.applthermaleng.2013.01.042
- Y. Noorollahi, M. Azadbakht and B. Ghobadian, Energy, 142, 196 (2018); https://doi.org/10.1016/j.energy.2017.10.024
- H.K. Imdadul, H.H. Masjuki, M.A. Kalam, N.W.M. Zulkifli, M.M. Rashed, A. Alabdulkarem, Y.H. Teoh and H.G. How, Energy Convers. Manage., 111, 174 (2016); https://doi.org/10.1016/j.enconman.2015.12.066
- E. Alptekin and M. Canakci, Fuel, 88, 75 (2009); https://doi.org/10.1016/j.fuel.2008.05.023
- G. Knothe and K. Steidley, Fuel, 84, 1059 (2005); https://doi.org/10.1016/j.fuel.2005.01.016
- I. Barabás, A. Todoruþ and D. Bãldean, Fuel, 89, 3827 (2010); https://doi.org/10.1016/j.fuel.2010.07.011
- S.J. De Silva, U.S.P.R. Arachchige and A.H.L.R. Nilmini, Asian J. Chem., 34, 25 (2021); https://doi.org/10.14233/ajchem.2022.23466
- Y. Tan, M. Abdullah, C. Nolasco-Hipolito, N. Zauzi and G. Abdullah, Energy Convers. Manage., 132, 54 (2017); https://doi.org/10.1016/j.enconman.2016.11.013
- J. Sutrisno, S. Dharma, A.S. Silitonga, A.H. Shamsuddin, A.H. Sebayang, J. Milano, Rahmawaty and Supriyanto, J. Mechan. Eng. Res. Develop., 43, 396 (2020).
References
U.S.P.R. Arachchige, K.L. Wijenayake, K.A.V. Miyuranga, D. Thilakarathne, N.A. Weerasekara and R.A. Jayasinghe, Int. J. Scient. Eng. Sci., 5, 1 (2021).
F. Perera, Int. J. Environ. Res. Public Health, 15, 16 (2018); https://doi.org/10.3390/ijerph15010016
E.A. Marais, R.F. Silvern, A. Vodonos, E. Dupin, A.S. Bockarie, L.J. Mickley and J. Schwartz, Environ. Sci. Technol., 53, 13524 (2019); https://doi.org/10.1021/acs.est.9b04958
R. Blazy, J. Blachut, A. Ciepiela, R. Labuz and R. Papiez, Front. Energy Res., 9, 767418 (2021); https://doi.org/10.1016/j.enpol.2019.110907
D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner and R. Gorini, Energy Strategy Rev., 24, 38 (2019); https://doi.org/10.1016/j.esr.2019.01.006
A. Piwowar and M. Dzikuc, Energies, 12, 3558 (2019); https://doi.org/10.3390/en12183558
L. Lakatos, G. Hevessy and J. Kovács, World Futures, 67, 395 (2011); https://doi.org/10.1080/02604020903021776
M.H. Hassan and M.A. Kalam, Procedia Eng., 56, 39 (2013); https://doi.org/10.1016/j.proeng.2013.03.087
U.S.P.R. Arachchige, K.A.V. Miyuranga, D. Thilakarathne, N.A. Weerasekara and R.A. Jayasinghe, Int. J. Scient. Eng. Sci., 5, 28 (2021).
A. Gupta and J. Verma, Renew. Sustain. Energy Rev., 41, 550 (2015); https://doi.org/10.1016/j.rser.2014.08.032
P. Kwanchareon, A. Luengnaruemitchai and S. Jai-In, Fuel, 86, 1053 (2007); https://doi.org/10.1016/j.fuel.2006.09.034
S. Shahir, H. Masjuki, M. Kalam, A. Imran, I. Fattah and A. Sanjid, Renew. Sustain. Energy Rev., 32, 379 (2014); https://doi.org/10.1016/j.rser.2014.01.029
D. Li, H. Zhen, L. Xingcai, Z. Wu-gao and Y. Jian-guang, Renew. Energy, 30, 967 (2005); https://doi.org/10.1016/j.renene.2004.07.010
N. Burnete, N. Filip and I. Barabás, Romanian J. Automotive Eng., 21, 89 (2015).
A. Hansen, Q. Zhang and P. Lyne, Bioresour. Technol., 96, 277 (2005); https://doi.org/10.1016/j.biortech.2004.04.007
H. Kim and S. Park, Fuel, 182, 541 (2016); https://doi.org/10.1016/j.fuel.2016.06.001
N. Al-Esawi, M. Al Qubeissi and R. Kolodnytska, Energies, 12, 1804 (2019); https://doi.org/10.3390/en12091804
O. Ogunkunle and N.A. Ahmed, Energy Rep., 5, 1560 (2019); https://doi.org/10.1016/j.egyr.2019.10.028
U.S.P.R. Arachchige, K.A.V. Miyuranga, D. Thilakarathne, R.A. Jayasinghe and N.A. Weerasekara, Nat. Environ. Pollut. Technol., 20, 1973 (2021); https://doi.org/10.46488/NEPT.2021.v20i05.013
C. Beatrice, P. Napolitano and C. Guido, Appl. Energy, 113, 373 (2014); https://doi.org/10.1016/j.apenergy.2013.07.058
Q. Fang, J. Fang, J. Zhuang and Z. Huang, Appl. Therm. Eng., 54, 541 (2013); https://doi.org/10.1016/j.applthermaleng.2013.01.042
Y. Noorollahi, M. Azadbakht and B. Ghobadian, Energy, 142, 196 (2018); https://doi.org/10.1016/j.energy.2017.10.024
H.K. Imdadul, H.H. Masjuki, M.A. Kalam, N.W.M. Zulkifli, M.M. Rashed, A. Alabdulkarem, Y.H. Teoh and H.G. How, Energy Convers. Manage., 111, 174 (2016); https://doi.org/10.1016/j.enconman.2015.12.066
E. Alptekin and M. Canakci, Fuel, 88, 75 (2009); https://doi.org/10.1016/j.fuel.2008.05.023
G. Knothe and K. Steidley, Fuel, 84, 1059 (2005); https://doi.org/10.1016/j.fuel.2005.01.016
I. Barabás, A. Todoruþ and D. Bãldean, Fuel, 89, 3827 (2010); https://doi.org/10.1016/j.fuel.2010.07.011
S.J. De Silva, U.S.P.R. Arachchige and A.H.L.R. Nilmini, Asian J. Chem., 34, 25 (2021); https://doi.org/10.14233/ajchem.2022.23466
Y. Tan, M. Abdullah, C. Nolasco-Hipolito, N. Zauzi and G. Abdullah, Energy Convers. Manage., 132, 54 (2017); https://doi.org/10.1016/j.enconman.2016.11.013
J. Sutrisno, S. Dharma, A.S. Silitonga, A.H. Shamsuddin, A.H. Sebayang, J. Milano, Rahmawaty and Supriyanto, J. Mechan. Eng. Res. Develop., 43, 396 (2020).