Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Fluorescence and Molecular Docking Study on the Interaction of 4′-Hydroxychalcone with Bovine Serum Albumin and Human Serum Albumin
Corresponding Author(s) : N. Shaemningwar Moyon
Asian Journal of Chemistry,
Vol. 34 No. 7 (2022): Vol 34 Issue 7, 2022
Abstract
The interaction of 4′-hydroxychalcone (4′HC) with bovine serum albumin (BSA) and human serum albumin (HSA) was studied under physiological condition (pH=7.0). The fluorescence intensity of both serum albumins was quenched in presence of 4′HC at different temperatures. Stern-Volmer analysis and bimolecular quenching constants indicates the presence of static quenching in BSA. Whereas, fluorescence quenching of HSA is due to both the mechanism of static and dynamic quenching. The formation of ground state complex is further confirmed by absorption spectroscopy. The interaction of 4′HC with BSA is stronger than with HSA. FRET study shows the possible energy transfer between 4′HC with BSA and HSA. The binding site of the protein was identified by molecular docking study. The FTIR and CD analysis indicates conformational change in both the serum albumins. The thermodynamic study indicates that the association of BSA and HSA with 4′HC is spontaneous, enthalpy driver and involves electrostatic force of interaction.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xue, Y. Zheng, L. An, L. Zhang, Y. Qian, D. Yu, X. Gong and Y. Liu, Comput. Theor. Chem., 982, 74 (2012); https://doi.org/10.1016/j.comptc.2011.12.020
- D.K. Mahapatra, V. Asati and S.K. Bharti, Eur. J. Med. Chem., 92, 839 (2015); https://doi.org/10.1016/j.ejmech.2015.01.051
- M.S. Özaslan, Y. Demir, H.E. Aslan, S. Beydemir and Ö.I. Küfrevioglu, J. Biochem. Mol. Toxicol., 32, e22047 (2018); https://doi.org/10.1002/jbt.22047
- K.L. Lahtchev, D.I. Batovska, S.P. Parushev, V.M. Ubiyvovk and A.A. Sibirny, Eur. J. Med. Chem., 43, 2220 (2008); https://doi.org/10.1016/j.ejmech.2007.12.027
- Z. Nowakowska, Eur. J. Med. Chem., 42, 125 (2007); https://doi.org/10.1016/j.ejmech.2006.09.019
- M. Liu, P. Wilairat, S.L. Croft, A.L.-C. Tan and M.-L. Go, Bioorg. Med. Chem., 11, 2729 (2003); https://doi.org/10.1016/S0968-0896(03)00233-5
- Z. Nowakowska, B. Kedzia and G. Schroeder, Eur. J. Med. Chem., 43, 707 (2008); https://doi.org/10.1016/j.ejmech.2007.05.006
- S. Vogel, S. Ohmayer, G. Brunner and J. Heilmann, Bioorg. Med. Chem., 16, 4286 (2008); https://doi.org/10.1016/j.bmc.2008.02.079
- L.-M. Zhao, H.-S. Jin, L.-P. Sun, H.-R. Piao and Z.-S. Quan, Bioorg. Med. Chem. Lett., 15, 5027 (2005); https://doi.org/10.1016/j.bmcl.2005.08.039
- Z. Wan, D. Hu, P. Li, D. Xie and X. Gan, Molecules, 20, 11861 (2015); https://doi.org/10.3390/molecules200711861
- L. Ni, C.Q. Meng and J.A. Sikorski, Expert Opin. Ther. Pat., 14, 1669 (2004); https://doi.org/10.1517/13543776.14.12.1669
- V. Tomeckova, M. Poskrobova, M. Stefanisinova and P. Perjesi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 74, 1242 (2009); https://doi.org/10.1016/j.saa.2009.09.048
- M. Cabrera, M. Simoens, G. Falchi, M.L. Lavaggi, O.E. Piro, E.E. Castellano, A. Vidal, A. Azqueta, A. Monge, A.L. de Ceráin, G. Sagrera, G. Seoane, H. Cerecetto and M. González, Bioorg. Med. Chem., 15, 3356 (2007); https://doi.org/10.1016/j.bmc.2007.03.031
- T.A. Fayed and M.K. Awad, Chem. Phys., 303, 317 (2004); https://doi.org/10.1016/j.chemphys.2004.06.023
- K. Fodor, V. Tomescova, T. Koszegi, I. Kron and P. Perjesi, Monatsh. Chem., 142, 463 (2011); https://doi.org/10.1007/s00706-011-0463-0
- B. Orlikova, D. Tasdemir, F. Golais, M. Dicato and M. Diederich, Biochem. Pharmacol., 82, 620 (2011); https://doi.org/10.1016/j.bcp.2011.06.012
- R.C. Bargou, F. Emmerich, D. Krappmann, K. Bommert, M.Y. Mapara, W. Arnold, H.D. Royer, E. Grinstein, A. Greiner, C. Scheidereit and B. Dörken, J. Clin. Invest., 100, 2961 (1997); https://doi.org/10.1172/JCI119849
- J. Loa, P. Chow and K. Zhang, Cancer Chemother. Pharmacol., 63, 1007 (2009); https://doi.org/10.1007/s00280-008-0802-y
- K.S. Ahn, G. Sethi and B.B. Aggarwal, Biochem. Pharmacol., 75, 907 (2008); https://doi.org/10.1016/j.bcp.2007.10.010
- K.M. Naik and S.T. Nandibewoor, J. Lumin., 143, 484 (2013); https://doi.org/10.1016/j.jlumin.2013.05.013
- A. Szkudlarek, D. Pentak, A. Ploch, J. Pozycka and M. MaciazekJurczyk, Molecules, 22, 569 (2017); https://doi.org/10.3390/molecules22040569
- I.R. Singh and S. Mitra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 206, 569 (2019); https://doi.org/10.1016/j.saa.2018.08.055
- L. Khalili and G. Dehghan, J. Lumin., 211, 193 (2019); https://doi.org/10.1016/j.jlumin.2019.03.048
- A. Papadopoulou, R.J. Green and R.A. Frazier, J. Agric. Food Chem., 53, 158 (2005); https://doi.org/10.1021/jf048693g
- G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, AutoDock, Version 4.0.1, The Scripps Research Institute, La Jolla, CA, USA (2007).
- Y. Zhao and D.G. Truhlar, Acc. Chem. Res., 41, 157 (2008); https://doi.org/10.1021/ar700111a
- M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
- Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P.
- Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
- O.A. Chaves, V.A. da Silva, C.M.R. Sant’Anna, A.B.B. Ferreira, T.A.N. Ribeiro, M.G. de Carvalho, D. Cesarin-Sobrinho and J.C. NettoFerreira, J. Mol. Struct., 1128, 606 (2017); https://doi.org/10.1016/j.molstruc.2016.09.036
- J.R. Lankowicz, Principles of Fluorescence Spectroscopy, Springer Science + Business Media: NY, Ed.: 3 (2006).
- J.R. Lakowicz and G. Weber, Biochemistry, 12, 21 (1973).
- Y.Z. Zhang, J. Dai, X. Xiang, W.W. Li and Y. Liu, Mol. Biol. Rep., 37, 1541 (2010); https://doi.org/10.1007/s11033-009-9555-x
- J. Xiao, J. Shi, H. Cao, S. Wu, F. Ren and M. Xu, J. Pharm. Biomed. Anal., 45, 609 (2007); https://doi.org/10.1016/j.jpba.2007.08.032
- P. Mandal and T. Ganguly, J. Phys. Chem. B, 113, 14904 (2009); https://doi.org/10.1021/jp9062115
- X. Yan, B. Liu, B. Chong and S. Cao, J. Lumin., 142, 155 (2013); https://doi.org/10.1016/j.jlumin.2013.04.009
- G. Zhang, N. Zhao, X. Hu and J. Tian, Spectrochim. Acta A Mol. Biomol. Spectrosc., 76, 410 (2010); https://doi.org/10.1016/j.saa.2010.04.009
- H. Hamishehkar, S. Hosseini, A. Naseri, A. Safarnejad and F. Rasoulzadeh, Bioimpacts, 6, 125 (2016); https://doi.org/10.15171/bi.2016.19
- P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); https://doi.org/10.1021/bi00514a017
- A. Jahanban-Esfahlan and V. Panahi-Azar, Food Chem., 202, 426 (2016); https://doi.org/10.1016/j.foodchem.2016.02.026
- T.A. Wani, H. AlRabiah, A.H. Bakheit, M.A. Kalam and S. Zargar, Chem. Cent. J., 11, 134 (2017); https://doi.org/10.1186/s13065-017-0366-1
- M.S. Ali and H.A. Al-Lohedan, J. Mol. Liq., 278, 385 (2019); https://doi.org/10.1016/j.molliq.2019.01.034
- V.D. Suryawanshi, L.S. Walekar, A.H. Gore, P.V. Anbhule and G.B. Kolekar, J. Pharm. Anal., 6, 56 (2016); https://doi.org/10.1016/j.jpha.2015.07.001
- A. Khammari, A.A. Saboury, M.H. Karimi-Jafari, M. Khoobi, A. Ghasemi, S. Yousefinejad and O.K. Abou-Zied, Phys. Chem. Chem. Phys., 19, 10099 (2017); https://doi.org/10.1039/C7CP00681K
- O.A. Chaves, D. Cesarin-Sobrinho, C.M.R. Sant’Anna, M.G. de Carvalho, L.R. Suzart, F.E.A. Catunda-Junior, J.C. Netto-Ferreira and A.B.B. Ferreira, J. Photochem. Photobiol. Chem., 336, 32 (2017); https://doi.org/10.1016/j.jphotochem.2016.12.015
- J. Ma, Y. Fan, Q. Si, Y. Liu, X. Wang, H. Liu and M. Xie, Anal. Sci., 33, 493 (2017); https://doi.org/10.2116/analsci.33.493
- S.-Y. Lin, Y.-S. Wei, M.-J. Li and S.-L. Wang, Eur. J. Pharm. Biopharm., 57, 457 (2004); https://doi.org/10.1016/j.ejpb.2004.02.005
- K. Rahmelow and W. Hubner, Anal. Biochem., 241, 5 (1996); https://doi.org/10.1006/abio.1996.0369
- N. Singh, N. Kumar, G. Rathee, D. Sood, A. Singh, V. Tomar, S.K. Dass and R. Chandra, ACS Omega, 5, 2267 (2020); https://doi.org/10.1021/acsomega.9b03479
- H. Kumar, V. Devaraji, R. Joshi, M.K. Jadhao, P. Ahirkar, R. Prasath, P. Bhavana and S.K. Ghosh, RSC Adv., 5, 65496 (2015); https://doi.org/10.1039/C5RA08778C
- M.F. AlAjmi, M.T. Rehman, R.A. Khan, M.A. Khan, G. Muteeb, M.S. Khan, O.M. Noman, A. Alsalme and A. Hussain, Spectrochim. Acta A Mol. Biomol. Spectrosc., 225, 117457 (2020); https://doi.org/10.1016/j.saa.2019.117457
- O.A. Chaves, L.S. de Barros, M.C.C. de Oliveira, C.M.R. Sant’Anna, A.B.B. Ferreira, F.A. da Silva, D. Cesarin-Sobrinho and J.C. NettoFerreira, J. Fluor. Chem., 199, 30 (2017); https://doi.org/10.1016/j.jfluchem.2017.04.007
- O.A. Chaves, B. Mathew, D. Cesarin-Sobrinho, B. Lakshminarayanan, M. Joy, G.E. Mathew, J. Suresh and J.C. Netto-Ferreira, J. Mol. Liq., 242, 1018 (2017); https://doi.org/10.1016/j.molliq.2017.07.091
- X. Zhang, L. Li, Z. Xu, Z. Liang, J. Su, J. Huang and B. Li, PLoS One, 8, e59106 (2013); https://doi.org/10.1371/journal.pone.0059106
References
Y. Xue, Y. Zheng, L. An, L. Zhang, Y. Qian, D. Yu, X. Gong and Y. Liu, Comput. Theor. Chem., 982, 74 (2012); https://doi.org/10.1016/j.comptc.2011.12.020
D.K. Mahapatra, V. Asati and S.K. Bharti, Eur. J. Med. Chem., 92, 839 (2015); https://doi.org/10.1016/j.ejmech.2015.01.051
M.S. Özaslan, Y. Demir, H.E. Aslan, S. Beydemir and Ö.I. Küfrevioglu, J. Biochem. Mol. Toxicol., 32, e22047 (2018); https://doi.org/10.1002/jbt.22047
K.L. Lahtchev, D.I. Batovska, S.P. Parushev, V.M. Ubiyvovk and A.A. Sibirny, Eur. J. Med. Chem., 43, 2220 (2008); https://doi.org/10.1016/j.ejmech.2007.12.027
Z. Nowakowska, Eur. J. Med. Chem., 42, 125 (2007); https://doi.org/10.1016/j.ejmech.2006.09.019
M. Liu, P. Wilairat, S.L. Croft, A.L.-C. Tan and M.-L. Go, Bioorg. Med. Chem., 11, 2729 (2003); https://doi.org/10.1016/S0968-0896(03)00233-5
Z. Nowakowska, B. Kedzia and G. Schroeder, Eur. J. Med. Chem., 43, 707 (2008); https://doi.org/10.1016/j.ejmech.2007.05.006
S. Vogel, S. Ohmayer, G. Brunner and J. Heilmann, Bioorg. Med. Chem., 16, 4286 (2008); https://doi.org/10.1016/j.bmc.2008.02.079
L.-M. Zhao, H.-S. Jin, L.-P. Sun, H.-R. Piao and Z.-S. Quan, Bioorg. Med. Chem. Lett., 15, 5027 (2005); https://doi.org/10.1016/j.bmcl.2005.08.039
Z. Wan, D. Hu, P. Li, D. Xie and X. Gan, Molecules, 20, 11861 (2015); https://doi.org/10.3390/molecules200711861
L. Ni, C.Q. Meng and J.A. Sikorski, Expert Opin. Ther. Pat., 14, 1669 (2004); https://doi.org/10.1517/13543776.14.12.1669
V. Tomeckova, M. Poskrobova, M. Stefanisinova and P. Perjesi, Spectrochim. Acta A Mol. Biomol. Spectrosc., 74, 1242 (2009); https://doi.org/10.1016/j.saa.2009.09.048
M. Cabrera, M. Simoens, G. Falchi, M.L. Lavaggi, O.E. Piro, E.E. Castellano, A. Vidal, A. Azqueta, A. Monge, A.L. de Ceráin, G. Sagrera, G. Seoane, H. Cerecetto and M. González, Bioorg. Med. Chem., 15, 3356 (2007); https://doi.org/10.1016/j.bmc.2007.03.031
T.A. Fayed and M.K. Awad, Chem. Phys., 303, 317 (2004); https://doi.org/10.1016/j.chemphys.2004.06.023
K. Fodor, V. Tomescova, T. Koszegi, I. Kron and P. Perjesi, Monatsh. Chem., 142, 463 (2011); https://doi.org/10.1007/s00706-011-0463-0
B. Orlikova, D. Tasdemir, F. Golais, M. Dicato and M. Diederich, Biochem. Pharmacol., 82, 620 (2011); https://doi.org/10.1016/j.bcp.2011.06.012
R.C. Bargou, F. Emmerich, D. Krappmann, K. Bommert, M.Y. Mapara, W. Arnold, H.D. Royer, E. Grinstein, A. Greiner, C. Scheidereit and B. Dörken, J. Clin. Invest., 100, 2961 (1997); https://doi.org/10.1172/JCI119849
J. Loa, P. Chow and K. Zhang, Cancer Chemother. Pharmacol., 63, 1007 (2009); https://doi.org/10.1007/s00280-008-0802-y
K.S. Ahn, G. Sethi and B.B. Aggarwal, Biochem. Pharmacol., 75, 907 (2008); https://doi.org/10.1016/j.bcp.2007.10.010
K.M. Naik and S.T. Nandibewoor, J. Lumin., 143, 484 (2013); https://doi.org/10.1016/j.jlumin.2013.05.013
A. Szkudlarek, D. Pentak, A. Ploch, J. Pozycka and M. MaciazekJurczyk, Molecules, 22, 569 (2017); https://doi.org/10.3390/molecules22040569
I.R. Singh and S. Mitra, Spectrochim. Acta A Mol. Biomol. Spectrosc., 206, 569 (2019); https://doi.org/10.1016/j.saa.2018.08.055
L. Khalili and G. Dehghan, J. Lumin., 211, 193 (2019); https://doi.org/10.1016/j.jlumin.2019.03.048
A. Papadopoulou, R.J. Green and R.A. Frazier, J. Agric. Food Chem., 53, 158 (2005); https://doi.org/10.1021/jf048693g
G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew and A.J. Olson, AutoDock, Version 4.0.1, The Scripps Research Institute, La Jolla, CA, USA (2007).
Y. Zhao and D.G. Truhlar, Acc. Chem. Res., 41, 157 (2008); https://doi.org/10.1021/ar700111a
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P.
Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Ö. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski and D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).
O.A. Chaves, V.A. da Silva, C.M.R. Sant’Anna, A.B.B. Ferreira, T.A.N. Ribeiro, M.G. de Carvalho, D. Cesarin-Sobrinho and J.C. NettoFerreira, J. Mol. Struct., 1128, 606 (2017); https://doi.org/10.1016/j.molstruc.2016.09.036
J.R. Lankowicz, Principles of Fluorescence Spectroscopy, Springer Science + Business Media: NY, Ed.: 3 (2006).
J.R. Lakowicz and G. Weber, Biochemistry, 12, 21 (1973).
Y.Z. Zhang, J. Dai, X. Xiang, W.W. Li and Y. Liu, Mol. Biol. Rep., 37, 1541 (2010); https://doi.org/10.1007/s11033-009-9555-x
J. Xiao, J. Shi, H. Cao, S. Wu, F. Ren and M. Xu, J. Pharm. Biomed. Anal., 45, 609 (2007); https://doi.org/10.1016/j.jpba.2007.08.032
P. Mandal and T. Ganguly, J. Phys. Chem. B, 113, 14904 (2009); https://doi.org/10.1021/jp9062115
X. Yan, B. Liu, B. Chong and S. Cao, J. Lumin., 142, 155 (2013); https://doi.org/10.1016/j.jlumin.2013.04.009
G. Zhang, N. Zhao, X. Hu and J. Tian, Spectrochim. Acta A Mol. Biomol. Spectrosc., 76, 410 (2010); https://doi.org/10.1016/j.saa.2010.04.009
H. Hamishehkar, S. Hosseini, A. Naseri, A. Safarnejad and F. Rasoulzadeh, Bioimpacts, 6, 125 (2016); https://doi.org/10.15171/bi.2016.19
P.D. Ross and S. Subramanian, Biochemistry, 20, 3096 (1981); https://doi.org/10.1021/bi00514a017
A. Jahanban-Esfahlan and V. Panahi-Azar, Food Chem., 202, 426 (2016); https://doi.org/10.1016/j.foodchem.2016.02.026
T.A. Wani, H. AlRabiah, A.H. Bakheit, M.A. Kalam and S. Zargar, Chem. Cent. J., 11, 134 (2017); https://doi.org/10.1186/s13065-017-0366-1
M.S. Ali and H.A. Al-Lohedan, J. Mol. Liq., 278, 385 (2019); https://doi.org/10.1016/j.molliq.2019.01.034
V.D. Suryawanshi, L.S. Walekar, A.H. Gore, P.V. Anbhule and G.B. Kolekar, J. Pharm. Anal., 6, 56 (2016); https://doi.org/10.1016/j.jpha.2015.07.001
A. Khammari, A.A. Saboury, M.H. Karimi-Jafari, M. Khoobi, A. Ghasemi, S. Yousefinejad and O.K. Abou-Zied, Phys. Chem. Chem. Phys., 19, 10099 (2017); https://doi.org/10.1039/C7CP00681K
O.A. Chaves, D. Cesarin-Sobrinho, C.M.R. Sant’Anna, M.G. de Carvalho, L.R. Suzart, F.E.A. Catunda-Junior, J.C. Netto-Ferreira and A.B.B. Ferreira, J. Photochem. Photobiol. Chem., 336, 32 (2017); https://doi.org/10.1016/j.jphotochem.2016.12.015
J. Ma, Y. Fan, Q. Si, Y. Liu, X. Wang, H. Liu and M. Xie, Anal. Sci., 33, 493 (2017); https://doi.org/10.2116/analsci.33.493
S.-Y. Lin, Y.-S. Wei, M.-J. Li and S.-L. Wang, Eur. J. Pharm. Biopharm., 57, 457 (2004); https://doi.org/10.1016/j.ejpb.2004.02.005
K. Rahmelow and W. Hubner, Anal. Biochem., 241, 5 (1996); https://doi.org/10.1006/abio.1996.0369
N. Singh, N. Kumar, G. Rathee, D. Sood, A. Singh, V. Tomar, S.K. Dass and R. Chandra, ACS Omega, 5, 2267 (2020); https://doi.org/10.1021/acsomega.9b03479
H. Kumar, V. Devaraji, R. Joshi, M.K. Jadhao, P. Ahirkar, R. Prasath, P. Bhavana and S.K. Ghosh, RSC Adv., 5, 65496 (2015); https://doi.org/10.1039/C5RA08778C
M.F. AlAjmi, M.T. Rehman, R.A. Khan, M.A. Khan, G. Muteeb, M.S. Khan, O.M. Noman, A. Alsalme and A. Hussain, Spectrochim. Acta A Mol. Biomol. Spectrosc., 225, 117457 (2020); https://doi.org/10.1016/j.saa.2019.117457
O.A. Chaves, L.S. de Barros, M.C.C. de Oliveira, C.M.R. Sant’Anna, A.B.B. Ferreira, F.A. da Silva, D. Cesarin-Sobrinho and J.C. NettoFerreira, J. Fluor. Chem., 199, 30 (2017); https://doi.org/10.1016/j.jfluchem.2017.04.007
O.A. Chaves, B. Mathew, D. Cesarin-Sobrinho, B. Lakshminarayanan, M. Joy, G.E. Mathew, J. Suresh and J.C. Netto-Ferreira, J. Mol. Liq., 242, 1018 (2017); https://doi.org/10.1016/j.molliq.2017.07.091
X. Zhang, L. Li, Z. Xu, Z. Liang, J. Su, J. Huang and B. Li, PLoS One, 8, e59106 (2013); https://doi.org/10.1371/journal.pone.0059106