Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
A Brief Overview on Facile Synthesis and Challenging Properties of Graphene Nanocomposite: State-of-the-art
Corresponding Author(s) : Pramod Kumar Satapathy
Asian Journal of Chemistry,
Vol. 34 No. 7 (2022): Vol 34 Issue 7, 2022
Abstract
This review work aims to present a brief study on the unique carbon allotrope graphene and its composite with nanoparticles. Graphene plays an important role in physics, chemistry, biotechnology, medical science, materials science and many more fields. The wide applications of graphene are based on its unique structure, exceptional physical properties, chemical tunability and dramatically electronic arrangement. The current world demands the energy conversion, digital technology and medical diagnoses in lower potential value, low cost, high reproducibility and high portability. Graphene nanocomposite possessing the above criteria and able to fulfill the worlds demand and become the most rising shining star in the horizon of material science research field. This review elaborates about historical background, structural feature, developed synthesis process, unique properties, characterizations and its different magnificent biosensor applications. In particular, the general overview study of its different fascinating properties such as mechanical, optical, magnetic, quantum hall effect, electronic transport properties and these makes graphene nanocomposite a rising tool for different biosensor applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
- M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D.K. Maude, A.L. Barra, M. Sprinkle, C. Berger, W.A. de Heer and M. Potemski, Phys. Rev. Lett., 101, 267601 (2008); https://doi.org/10.1103/PhysRevLett.101.267601
- S.K. Tiwari, S. Sahoo, N. Wang and A. Huczko, J. Sci. Adv. Mater. Devices, 5, 10 (2020); https://doi.org/10.1016/j.jsamd.2020.01.006
- C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); https://doi.org/10.1126/science.1157996
- V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril and K.S. Kim, Chem. Rev., 112, 6156 (2012); https://doi.org/10.1021/cr3000412
- L. Rodríguez-Pérez, M.Á. Herranz and N. Martín, Chem. Commun., 49, 3721 (2013); https://doi.org/10.1039/c3cc38950b
- O.C. Compton and S.B.T. Nguyen, Small, 6, 711 (2010); https://doi.org/10.1002/smll.200901934
- A.T. Smith, A.M. LaChance, S. Zeng, B. Liu and L. Sun, Nano Mater. Sci., 1, 31 (2019); https://doi.org/10.1016/j.nanoms.2019.02.004
- H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace and D. Li, Adv. Mater., 20, 3557 (2008); https://doi.org/10.1002/adma.200800757
- M.S. Nevius, M. Conrad, F. Wang, A. Celis, M.N. Nair, A. Taleb-Ibrahimi, A. Tejeda and E.H. Conrad, Phys. Rev. Lett., 115, 136802 (2015); https://doi.org/10.1103/PhysRevLett.115.136802
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, Nature, 438, 197 (2005); https://doi.org/10.1038/nature04233
- Y.B. Zhang, Y.W. Tan, H.L. Stormer and P. Kim, Nature, 438, 201 (2005); https://doi.org/10.1038/nature04235
- A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); https://doi.org/10.1021/nl0731872
- P. Wallace, Phys. Rev., 71, 622 (1947); https://doi.org/10.1103/PhysRev.71.622
- M.I. Katsnelson, K.S. Novoselov and A.K. Geim, Nat. Phys., 2, 620 (2006); https://doi.org/10.1038/nphys384
- J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari, Y. Shi, P.M. Ajayan and N.A. Koratkar, Nat. Mater., 11, 217 (2012); https://doi.org/10.1038/nmat3228
- C.J. Shih, Q.H. Wang, S. Lin, K.C. Park, Z. Jin, M.S. Strano and D. Blankschtein, Phys. Rev. Lett., 109, 176101 (2012); https://doi.org/10.1103/PhysRevLett.109.176101
- F. Rozpaloch, J. Patyk and J. Stankowsk, Acta Phys. Pol. A, 112, 73 (2007).
- C.A. Coulson, Valence, The University Press, Oxford, vol. 2, p. 391 (1965).
- H. Shioyama, Synth. Metals, 114, 1 (2000); https://doi.org/10.1016/S0379-6779(00)00222-8
- S. Stankovich, R.D. Piner, X.Q. Chen, N.Q. Wu, S.T. Nguyen and R.S. Ruoff, J. Mater. Chem., 16, 155 (2006); https://doi.org/10.1039/B512799H
- S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034
- D. Li, M.B. Muller, S. Gilje, R.B. Kaner and G.G. Wallace, Nat. Nanotechnol., 3, 101 (2008); https://doi.org/10.1038/nnano.2007.451
- S. Gilje, S. Han, M. Wang, K.L. Wang and R.B. Kaner, Nano Lett., 7, 3394 (2007); https://doi.org/10.1021/nl0717715
- M. Muller, C. Kubel and K. Mullen, Chem. Eur. J., 4, 2099 (1998); https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2099::AIDCHEM2099>3.0.CO;2-T
- N. Tyutyulkov, G. Madjarova, F. Dietz and K. Mullen, J. Phys. Chem. B, 102, 10183 (1998); https://doi.org/10.1021/jp982651b
- C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First and W.A. de Heer, J. Phys. Chem., 108, 19912 (2004); https://doi.org/10.1021/jp040650f
- W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski and G. Martinez, Solid State Commun., 143, 92 (2007); https://doi.org/10.1016/j.ssc.2007.04.023
- C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov and L.J. Li, ACS Nano, 5, 2332 (2011); https://doi.org/10.1021/nn200025p
- N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang and J. Chen, Adv. Funct. Mater., 18, 1518 (2008); https://doi.org/10.1002/adfm.200700797
- G. Williams, B. Seger and P.V. Kamat, ACS Nano, 2, 1487 (2008); https://doi.org/10.1021/nn800251f
- O. Akhavan, M. Abdolahad, A. Esfandiar and M. Mohatashamifar, J. Phys. Chem. C, 114, 12955 (2010); https://doi.org/10.1021/jp103472c
- O. Akhavan, Carbon, 48, 509 (2010); https://doi.org/10.1016/j.carbon.2009.09.069
- H.B. Zhang, J.W. Wang, Q. Yan, W.-G. Zheng, C. Chen and Z.-Z. Yu, J. Mater. Chem., 21, 5392 (2011); https://doi.org/10.1039/c1jm10099h
- V. Strong, S. Dubin, M.F. Elkady, A. Lech, Y. Wang, B.H. Weiller and R.B. Kaner, ACS Nano, 6, 1395 (2012); https://doi.org/10.1021/nn204200w
- R. Trusovas, K. Ratautas, G. Raciukaitis, J. Barkauskas, I. Stankeviciene, G. Niaura and R. Mazeikiene, Carbon, 52, 574 (2013); https://doi.org/10.1016/j.carbon.2012.10.017
- Y.L. Zhang, L. Guo, H. Xia, Q.-D. Chen, J. Feng and H.-B. Sun, Adv. Opt. Mater., 2, 10 (2014); https://doi.org/10.1002/adom.201300317
- W. Chen, L. Yan and P.R. Bangal, Carbon, 48, 1146 (2010); https://doi.org/10.1016/j.carbon.2009.11.037
- D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin and M. Chhowalla, Nanomaterials, 353, 1413 (2016); https://doi.org/10.1126/science.aah3398
- C.K. Chua, A. Ambrosi and M. Pumera, J. Mater. Chem., 22, 11054 (2012); https://doi.org/10.1039/c2jm16054d
- E.C. Salas, Z. Sun, A. Luttge and J.M. Tour, ACS Nano, 4, 4852 (2010); https://doi.org/10.1021/nn101081t
- X. Zhu, Q. Liu, C. Li, M. Xu and Y. Liang, J. Electrochem. Sci., 7, 5172 (2012).
- S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali and R.S. Ruoff, Carbon, 49, 3019 (2011); https://doi.org/10.1016/j.carbon.2011.02.071
- P. Yang, Q. Liu, J. Liu, H. Zhang, Z. Li, R. Li, L. Liu and J. Wang, Ind. Eng. Chem. Res., 56, 3588 (2017); https://doi.org/10.1021/acs.iecr.6b04532
- Z. Yang, Q. Zheng, H. Qiu, J. Li and J. Yang, N. Carbon Mater., 30, 41 (2015); https://doi.org/10.1016/S1872-5805(15)60174-3
- T.K. Behera, S.C. Sahu, B. Satpati, B. Bag, K. Sanjay and B.K. Jena, Electrochim. Acta, 206, 238 (2016); https://doi.org/10.1016/j.electacta.2016.03.046
- S.C. Sahu, T.K. Behera, A. Dash, B. Jena, A. Ghosh and B.K. Jena, New J. Chem., 40, 1096 (2016); https://doi.org/10.1039/C5NJ02555A
- T.K. Behera, P.K. Satpathy and P. Mohapatra, Nanoparticles: Excellent Transducer for Electrochemical Biosensor, Arcler Publishing, pp. 215-249 (2018).
- T.K. Behera, P.K. Satpathy and P. Mohapatra, Methanol and Formic Acid Oxidation: Selective Fuel Cell Processes, Apple Academic Press (AAP), Inc., Canada, A Taylor & Francis Group (2019).
- Y. Wei and Z. Sun, Curr. Opin. Colloid Interface Sci., 20, 311 (2015); https://doi.org/10.1016/j.cocis.2015.10.010
- M. Cai, D. Thorpe, D.H. Adamson and H.C. Schniepp, J. Mater. Chem., 22, 24992 (2012); https://doi.org/10.1039/C2JM34517J
- J.N. Coleman, Acc. Chem. Res., 46, 14 (2013); https://doi.org/10.1021/ar300009f
- K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj and C.N.R. Rao, J. Phys. Chem., 113, 4257 (2009); https://doi.org/10.1021/jp900791y
- K.F. Kelly and W.E. Billups, Acc. Chem. Res., 46, 4 (2013); https://doi.org/10.1021/ar300121q
- F.M. Koehler and W.J. Stark, Acc. Chem. Res., 46, 2297 (2013); https://doi.org/10.1021/ar300125w
- Y.N. Xia, Y.J. Xiong, B. Lim and S.E. Skrabalak, Angew. Chem. Int. Ed., 48, 60 (2009); https://doi.org/10.1002/anie.200802248
- M. Terrones, Proc. Natl. Acad. Sci. USA, 109, 7951 (2012); https://doi.org/10.1073/pnas.1205024109
- J. Lu, Y. Li, S. Li and S.P. Jiang, Sci. Rep., 6, 21530 (2016); https://doi.org/10.1038/srep21530
- D.B. Shinde, M. Majumder and V.K. Pillai, Sci. Rep., 4, 4363 (2014); https://doi.org/10.1038/srep04363
- A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour and S.W. Joo, Nanoscale Res. Lett., 9, 393 (2014); https://doi.org/10.1186/1556-276X-9-393
- V.N. Popov, Mater. Sci. Eng. Rep., 43, 61 (2004); https://doi.org/10.1016/j.mser.2003.10.001
- B.C. Brodie, Philos. Trans. R. Soc. Lond., 149, 249 (1859); https://doi.org/10.1098/rstl.1859.0013
- W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
- U. Hofmann and R. Holst, Ber. Dtsch. Chem. Ges. B, 72, 754 (1939); https://doi.org/10.1002/cber.19390720417
- G. Ruess, Monatsh. Chem., 76, 381 (1947); https://doi.org/10.1007/BF00898987
- W. Scholz and H.P. Boehm, Z. Anorg. Allg. Chem., 369, 327 (1969); https://doi.org/10.1002/zaac.19693690322
- T. Nakajima and Y. Matsuo, Carbon, 32, 469 (1994); https://doi.org/10.1016/0008-6223(94)90168-6
- D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, Int. Schol. Res. Notices, 2012, 501686 (2012); https://doi.org/10.5402/2012/501686
- M. Eizenberg and J.M. Blakely, J. Chem. Phys., 71, 3467 (1979); https://doi.org/10.1063/1.438736
- B. Lang, Surf. Sci., 53, 317 (1975); https://doi.org/10.1016/0039-6028(75)90132-6
- X. Lu, M. Yu, H. Huang and R.S. Ruoff, Nanotechnology, 10, 269 (1999); https://doi.org/10.1088/0957-4484/10/3/308
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896
- X. An, T. Simmons, R. Shah, C. Wolfe, K. Lewis, M. Washington, M. Nayak, S.K. Talapatra and S. Kar, Nano Lett., 10, 4295 (2010); https://doi.org/10.1021/nl903557p
- X. Liang, Z. Fu and S. Chou, Nano Lett., 7, 3840 (2007); https://doi.org/10.1021/nl072566s
- A. Reina, S. Thiele, X.T. Jia, S. Bhaviripudi, M.S. Dresselhaus, J.A. Schaefer and J. Kong, Nano Res., 2, 509 (2009);
- https://doi.org/10.1007/s12274-009-9059-y
- Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen and S.-S. Pei, Appl. Phys. Lett., 93, 113103 (2008); https://doi.org/10.1063/1.2982585
- X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo and R.S. Ruoff, Science, 324, 1312 (2009); https://doi.org/10.1126/science.1171245
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi and B.H. Hong, Nature, 457, 706 (2009); https://doi.org/10.1038/nature07719
- M. Choucair, P. Thordarson and J.A. Stride, Nat. Nanotechnol., 4, 30 (2009); https://doi.org/10.1038/nnano.2008.365
- P.W. Sutter, J.I. Flege and E.A. Sutter, Nat. Mater., 7, 406 (2008); https://doi.org/10.1038/nmat2166
- J. Coraux, A.T. N’Diaye, C. Busse and T. Michely, Nano Lett., 8, 565 (2008); https://doi.org/10.1021/nl0728874
- A. Reina, X.T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus and S. Kong, Nano Lett., 9, 30 (2009); https://doi.org/10.1021/nl801827v
- N.G. Shang, P. Papakonstantinou, M. McMullan, A. Stamboulis, M. Chu, A. Potenza, S.S. Dhesi and H. Marchetto, Adv. Funct. Mater., 18, 3506 (2008); https://doi.org/10.1002/adfm.200800951
- S. Stankovich, D. Dikin, A. Dommett, G.H.B. Kohlhaas, K.M. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen and R.S. Ruoff, Nature, 442, 282 (2006); https://doi.org/10.1038/nature04969
- M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); https://doi.org/10.1021/nl802558y
- X. Wang, L. Zhi and K. Mullen, Nano Lett., 8, 323 (2008); https://doi.org/10.1021/nl072838r
- W.S. Hummers, The Oxidation of Graphite to Graphitic Oxide, US Patent 2,798,878 (1967).
- L. Staudenmaier and V.Z. Darstellung, Eur. J. Inorg. Chem., 31, 1481 (1988).
- V.H. Pham, T.V. Cuong, T.D. Nguyen-Phan, H.D. Pham, E.J. Kim, S.H. Hur, E.W. Shin, S. Kim and J.S. Chung, Chem. Commun., 46, 4375 (2010); https://doi.org/10.1039/c0cc00363h
- X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang and S. Guo, J. Phys. Chem. C, 115, 11957 (2011); https://doi.org/10.1021/jp202575j
- C. Zhu, S. Guo, Y. Fang and S. Dong, ACS Nano, 4, 2429 (2010); https://doi.org/10.1021/nn1002387
- J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo, Chem. Commun., 46, 1112 (2010); https://doi.org/10.1039/B917705A
- G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu and J. Yao, J. Phys. Chem., 112, 8192 (2008); https://doi.org/10.1021/jp710931h
- X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang and F. Zhang, Adv. Mater., 20, 4490 (2008); https://doi.org/10.1002/adma.200801306
- C.A. Amarnath, C.E. Hong, N.H. Kim, B.C. Ku, T. Kuila and J.H. Lee, Carbon, 49, 3497 (2011); https://doi.org/10.1016/j.carbon.2011.04.048
- H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi and Y.H. Lee, Adv. Funct. Mater., 19, 1987 (2009); https://doi.org/10.1002/adfm.200900167
- W. Qian, R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao and X. Liang, Nano Res., 2, 706 (2009); https://doi.org/10.1007/s12274-009-9074-z
- L.Y. Jiao, X.R. Wang, G. Diankov, H.L. Wang and H.J. Dai, Nat. Nanotechnol., 5, 321 (2010); https://doi.org/10.1038/nnano.2010.54
- K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj and C.N.R. Rao, J. Phys. Chem. C, 113, 4257 (2009); https://doi.org/10.1021/jp900791y
- L.S. Panchakarla, A. Govindaraj and C.N.R. Rao, Inorg. Chim. Acta, 363, 4163 (2010); https://doi.org/10.1016/j.ica.2010.07.057
- Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang and H.M. Cheng, ACS Nano, 3, 411 (2009); https://doi.org/10.1021/nn900020u
- K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj and C.N.R. Rao, J. Mater. Chem., 18, 1517 (2008); https://doi.org/10.1039/b716536f
- X. Fang, J. Donahue, A. Shashurin and M.Keidar, Graphene, 4, 53151 (2015); https://doi.org/10.4236/graphene.2015.41001
- J.L. Qi, W.T. Zheng, X.H. Zheng, X. Wang and H.W. Tian, Appl. Surf. Sci., 257, 6531 (2011); https://doi.org/10.1016/j.apsusc.2011.02.069
- P. Yang, L. Zhou, S. Zhang, N. Wan, W. Pan and W. Shen, J. Appl. Phys., 116, 244306 (2014); https://doi.org/10.1063/1.4904958
- E. Moreau, F.J. Ferrer, D. Vignaud, S. Godey and X. Wallart, Phys. Status Solidi., A Appl. Mater. Sci., 207, 300 (2010); https://doi.org/10.1002/pssa.200982412
- W. Gao, L.B. Alemany, L.J. Ci and P.M. Ajayan, Nat. Chem., 1, 403 (2009); https://doi.org/10.1038/nchem.281
- Q. Zhuo, Y. Ma, J. Gao, P. Zhang, Y. Xia, Y. Tian, X.X. Sun, J. Zhong and X. Sun, Inorg. Chem., 52, 3141 (2013); https://doi.org/10.1021/ic302608g
- R. Muszynski, B. Seger and P.V. Kamat, J. Phys. Chem. C, 112, 5263 (2008); https://doi.org/10.1021/jp800977b
- H. Tien, W. Huang, Y.L. Yang, S.Y. Wang and J.Y. Ma, Carbon, 49, 1550 (2011); https://doi.org/10.1016/j.carbon.2010.12.022
- Y. Zhou, Q. Bao, L. Tang, L.A.L. Zhong and K.P. Loh, Chem. Mater., 21, 2950 (2009); https://doi.org/10.1021/cm9006603
- W. Zou, J. Zhu, Y. Sun and X. Wang, Mater. Chem. Phys., 125, 617 (2011); https://doi.org/10.1016/j.matchemphys.2010.10.008
- S. Wu, Z. Yin, Q. He, G. Lu, X. Zhou and H. Zhang, J. Mater. Chem., 21, 3467 (2011); https://doi.org/10.1039/C0JM02267E
- S. Wu, Z. Yin, Q. He, X. Huang, X. Zhou and H. Zhang, J. Phys. Chem. C, 114, 11816 (2010); https://doi.org/10.1021/jp103696u
- F.A. He, J.T. Fan, D. Ma, L. Zhang, C. Leung and H.L. Chan, Carbon, 48, 3139 (2010); https://doi.org/10.1016/j.carbon.2010.04.052
- T.A. Pham, B.C. Choi and Y.T. Jeong, Nanotechnology, 21, 465603 (2010); https://doi.org/10.1088/0957-4484/21/46/465603
- P.T. Yin, S. Shah, M. Chhowalla and K.-B. Lee, Chem. Rev., 115, 2483 (2015); https://doi.org/10.1021/cr500537t
- B. Garg, T. Bisht and Y.-C. Ling, Molecules, 19, 14582 (2014); https://doi.org/10.3390/molecules190914582
- E. Rollings, G.-H. Gweon, S.Y. Zhou, B.S. Mun, J.L. McChesney, B.S. Hussain, A.V. Fedorov, P.N. First, W.A. de Heer and A. Lanzara, J. Phys. Chem. Solids, 67, 2172 (2006); https://doi.org/10.1016/j.jpcs.2006.05.010
- D.G. Papageorgiou, I.A. Kinloch and R.J. Young, Prog. Mater. Sci., 90, 75 (2017); https://doi.org/10.1016/j.pmatsci.2017.07.004
- T. Enoki, M. Suzuki and M. Endo, Graphite Intercalation Compounds and Applications, Oxford University Press (2003).
- M.S. Dresselhaus and G. Dresselhaus, Adv. Phys., 51, 1 (2002); https://doi.org/10.1080/00018730110113644
- N.M.R. Peres, Condens. Matter, 21, 095501 (2009); https://doi.org/10.1088/0953-8984/21/9/095501
- R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres and A.K. Geim, Science, 320, 1308 (2008); https://doi.org/10.1126/science.1156965
- F. Wang, Y.B. Zhang, C.S. Tian, C. Girit, A. Zettl, M. Crommie and Y.R. Shen, Science, 320, 206 (2008); https://doi.org/10.1126/science.1152793
- Y.H. Ng, I.V. Lightcap, K. Goodwin, M. Matsumura and P.V. Kamat, J. Phys. Chem. Lett., 1, 2222 (2010); https://doi.org/10.1021/jz100728z
- M. Wang, X. Shang, X. Yu, R. Liu, Y. Xie, H. Zhao, H. Cao and G. Zhang, Phys. Chem. Chem. Phys., 16, 26016 (2014); https://doi.org/10.1039/C4CP03824J
- O. Akhavan and E. Ghaderi, ACS Nano, 4, 5731 (2010); https://doi.org/10.1021/nn101390x
- H. Ji, H. Sun and X. Qu, Adv. Drug Deliv. Rev., 105, 176 (2016); https://doi.org/10.1016/j.addr.2016.04.009
- X. Wu, S. Tan, Y. Xing, Q. Pu, M. Wu and J.X. Zhao, Colloids Surf. B Biointerfaces, 157, 1 (2017); https://doi.org/10.1016/j.colsurfb.2017.05.024
- P. Kumar, P. Huo, R. Zhang, B. Liu, Nanomaterials, 5, 737 (2019); https://doi.org/10.3390/nano9050737
- B. Marta, M. Potara, M. Iliut, E. Jakab, T. Radu, F. Imre-Lucaci, G. Katona, O. Popescu and S. Astilean, Colloids Surf. A Physicochem. Eng. Asp., 487, 113 (2015); https://doi.org/10.1016/j.colsurfa.2015.09.046
- N. Hussain, A. Gogoi, R.K. Sarma and P. Sharma, ChemPlusChem, 79, 1774 (2014); https://doi.org/10.1002/cplu.201402240
- Y. Ouyang, X. Cai, Q. Shi, L. Liu, D. Wan, S. Tan and Y. Ouyang, Colloids Surf. B Biointerfaces, 107, 107 (2013); https://doi.org/10.1016/j.colsurfb.2013.01.073
References
A.K. Geim and K.S. Novoselov, Nat. Mater., 6, 183 (2007); https://doi.org/10.1038/nmat1849
M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D.K. Maude, A.L. Barra, M. Sprinkle, C. Berger, W.A. de Heer and M. Potemski, Phys. Rev. Lett., 101, 267601 (2008); https://doi.org/10.1103/PhysRevLett.101.267601
S.K. Tiwari, S. Sahoo, N. Wang and A. Huczko, J. Sci. Adv. Mater. Devices, 5, 10 (2020); https://doi.org/10.1016/j.jsamd.2020.01.006
C. Lee, X. Wei, J.W. Kysar and J. Hone, Science, 321, 385 (2008); https://doi.org/10.1126/science.1157996
V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril and K.S. Kim, Chem. Rev., 112, 6156 (2012); https://doi.org/10.1021/cr3000412
L. Rodríguez-Pérez, M.Á. Herranz and N. Martín, Chem. Commun., 49, 3721 (2013); https://doi.org/10.1039/c3cc38950b
O.C. Compton and S.B.T. Nguyen, Small, 6, 711 (2010); https://doi.org/10.1002/smll.200901934
A.T. Smith, A.M. LaChance, S. Zeng, B. Liu and L. Sun, Nano Mater. Sci., 1, 31 (2019); https://doi.org/10.1016/j.nanoms.2019.02.004
H. Chen, M.B. Muller, K.J. Gilmore, G.G. Wallace and D. Li, Adv. Mater., 20, 3557 (2008); https://doi.org/10.1002/adma.200800757
M.S. Nevius, M. Conrad, F. Wang, A. Celis, M.N. Nair, A. Taleb-Ibrahimi, A. Tejeda and E.H. Conrad, Phys. Rev. Lett., 115, 136802 (2015); https://doi.org/10.1103/PhysRevLett.115.136802
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos and A.A. Firsov, Nature, 438, 197 (2005); https://doi.org/10.1038/nature04233
Y.B. Zhang, Y.W. Tan, H.L. Stormer and P. Kim, Nature, 438, 201 (2005); https://doi.org/10.1038/nature04235
A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau, Nano Lett., 8, 902 (2008); https://doi.org/10.1021/nl0731872
P. Wallace, Phys. Rev., 71, 622 (1947); https://doi.org/10.1103/PhysRev.71.622
M.I. Katsnelson, K.S. Novoselov and A.K. Geim, Nat. Phys., 2, 620 (2006); https://doi.org/10.1038/nphys384
J. Rafiee, X. Mi, H. Gullapalli, A.V. Thomas, F. Yavari, Y. Shi, P.M. Ajayan and N.A. Koratkar, Nat. Mater., 11, 217 (2012); https://doi.org/10.1038/nmat3228
C.J. Shih, Q.H. Wang, S. Lin, K.C. Park, Z. Jin, M.S. Strano and D. Blankschtein, Phys. Rev. Lett., 109, 176101 (2012); https://doi.org/10.1103/PhysRevLett.109.176101
F. Rozpaloch, J. Patyk and J. Stankowsk, Acta Phys. Pol. A, 112, 73 (2007).
C.A. Coulson, Valence, The University Press, Oxford, vol. 2, p. 391 (1965).
H. Shioyama, Synth. Metals, 114, 1 (2000); https://doi.org/10.1016/S0379-6779(00)00222-8
S. Stankovich, R.D. Piner, X.Q. Chen, N.Q. Wu, S.T. Nguyen and R.S. Ruoff, J. Mater. Chem., 16, 155 (2006); https://doi.org/10.1039/B512799H
S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen and R.S. Ruoff, Carbon, 45, 1558 (2007); https://doi.org/10.1016/j.carbon.2007.02.034
D. Li, M.B. Muller, S. Gilje, R.B. Kaner and G.G. Wallace, Nat. Nanotechnol., 3, 101 (2008); https://doi.org/10.1038/nnano.2007.451
S. Gilje, S. Han, M. Wang, K.L. Wang and R.B. Kaner, Nano Lett., 7, 3394 (2007); https://doi.org/10.1021/nl0717715
M. Muller, C. Kubel and K. Mullen, Chem. Eur. J., 4, 2099 (1998); https://doi.org/10.1002/(SICI)1521-3765(19981102)4:11<2099::AIDCHEM2099>3.0.CO;2-T
N. Tyutyulkov, G. Madjarova, F. Dietz and K. Mullen, J. Phys. Chem. B, 102, 10183 (1998); https://doi.org/10.1021/jp982651b
C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First and W.A. de Heer, J. Phys. Chem., 108, 19912 (2004); https://doi.org/10.1021/jp040650f
W.A. de Heer, C. Berger, X. Wu, P.N. First, E.H. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M.L. Sadowski, M. Potemski and G. Martinez, Solid State Commun., 143, 92 (2007); https://doi.org/10.1016/j.ssc.2007.04.023
C.Y. Su, A.Y. Lu, Y. Xu, F.R. Chen, A.N. Khlobystov and L.J. Li, ACS Nano, 5, 2332 (2011); https://doi.org/10.1021/nn200025p
N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang and J. Chen, Adv. Funct. Mater., 18, 1518 (2008); https://doi.org/10.1002/adfm.200700797
G. Williams, B. Seger and P.V. Kamat, ACS Nano, 2, 1487 (2008); https://doi.org/10.1021/nn800251f
O. Akhavan, M. Abdolahad, A. Esfandiar and M. Mohatashamifar, J. Phys. Chem. C, 114, 12955 (2010); https://doi.org/10.1021/jp103472c
O. Akhavan, Carbon, 48, 509 (2010); https://doi.org/10.1016/j.carbon.2009.09.069
H.B. Zhang, J.W. Wang, Q. Yan, W.-G. Zheng, C. Chen and Z.-Z. Yu, J. Mater. Chem., 21, 5392 (2011); https://doi.org/10.1039/c1jm10099h
V. Strong, S. Dubin, M.F. Elkady, A. Lech, Y. Wang, B.H. Weiller and R.B. Kaner, ACS Nano, 6, 1395 (2012); https://doi.org/10.1021/nn204200w
R. Trusovas, K. Ratautas, G. Raciukaitis, J. Barkauskas, I. Stankeviciene, G. Niaura and R. Mazeikiene, Carbon, 52, 574 (2013); https://doi.org/10.1016/j.carbon.2012.10.017
Y.L. Zhang, L. Guo, H. Xia, Q.-D. Chen, J. Feng and H.-B. Sun, Adv. Opt. Mater., 2, 10 (2014); https://doi.org/10.1002/adom.201300317
W. Chen, L. Yan and P.R. Bangal, Carbon, 48, 1146 (2010); https://doi.org/10.1016/j.carbon.2009.11.037
D. Voiry, J. Yang, J. Kupferberg, R. Fullon, C. Lee, H.Y. Jeong, H.S. Shin and M. Chhowalla, Nanomaterials, 353, 1413 (2016); https://doi.org/10.1126/science.aah3398
C.K. Chua, A. Ambrosi and M. Pumera, J. Mater. Chem., 22, 11054 (2012); https://doi.org/10.1039/c2jm16054d
E.C. Salas, Z. Sun, A. Luttge and J.M. Tour, ACS Nano, 4, 4852 (2010); https://doi.org/10.1021/nn101081t
X. Zhu, Q. Liu, C. Li, M. Xu and Y. Liang, J. Electrochem. Sci., 7, 5172 (2012).
S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali and R.S. Ruoff, Carbon, 49, 3019 (2011); https://doi.org/10.1016/j.carbon.2011.02.071
P. Yang, Q. Liu, J. Liu, H. Zhang, Z. Li, R. Li, L. Liu and J. Wang, Ind. Eng. Chem. Res., 56, 3588 (2017); https://doi.org/10.1021/acs.iecr.6b04532
Z. Yang, Q. Zheng, H. Qiu, J. Li and J. Yang, N. Carbon Mater., 30, 41 (2015); https://doi.org/10.1016/S1872-5805(15)60174-3
T.K. Behera, S.C. Sahu, B. Satpati, B. Bag, K. Sanjay and B.K. Jena, Electrochim. Acta, 206, 238 (2016); https://doi.org/10.1016/j.electacta.2016.03.046
S.C. Sahu, T.K. Behera, A. Dash, B. Jena, A. Ghosh and B.K. Jena, New J. Chem., 40, 1096 (2016); https://doi.org/10.1039/C5NJ02555A
T.K. Behera, P.K. Satpathy and P. Mohapatra, Nanoparticles: Excellent Transducer for Electrochemical Biosensor, Arcler Publishing, pp. 215-249 (2018).
T.K. Behera, P.K. Satpathy and P. Mohapatra, Methanol and Formic Acid Oxidation: Selective Fuel Cell Processes, Apple Academic Press (AAP), Inc., Canada, A Taylor & Francis Group (2019).
Y. Wei and Z. Sun, Curr. Opin. Colloid Interface Sci., 20, 311 (2015); https://doi.org/10.1016/j.cocis.2015.10.010
M. Cai, D. Thorpe, D.H. Adamson and H.C. Schniepp, J. Mater. Chem., 22, 24992 (2012); https://doi.org/10.1039/C2JM34517J
J.N. Coleman, Acc. Chem. Res., 46, 14 (2013); https://doi.org/10.1021/ar300009f
K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj and C.N.R. Rao, J. Phys. Chem., 113, 4257 (2009); https://doi.org/10.1021/jp900791y
K.F. Kelly and W.E. Billups, Acc. Chem. Res., 46, 4 (2013); https://doi.org/10.1021/ar300121q
F.M. Koehler and W.J. Stark, Acc. Chem. Res., 46, 2297 (2013); https://doi.org/10.1021/ar300125w
Y.N. Xia, Y.J. Xiong, B. Lim and S.E. Skrabalak, Angew. Chem. Int. Ed., 48, 60 (2009); https://doi.org/10.1002/anie.200802248
M. Terrones, Proc. Natl. Acad. Sci. USA, 109, 7951 (2012); https://doi.org/10.1073/pnas.1205024109
J. Lu, Y. Li, S. Li and S.P. Jiang, Sci. Rep., 6, 21530 (2016); https://doi.org/10.1038/srep21530
D.B. Shinde, M. Majumder and V.K. Pillai, Sci. Rep., 4, 4363 (2014); https://doi.org/10.1038/srep04363
A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour and S.W. Joo, Nanoscale Res. Lett., 9, 393 (2014); https://doi.org/10.1186/1556-276X-9-393
V.N. Popov, Mater. Sci. Eng. Rep., 43, 61 (2004); https://doi.org/10.1016/j.mser.2003.10.001
B.C. Brodie, Philos. Trans. R. Soc. Lond., 149, 249 (1859); https://doi.org/10.1098/rstl.1859.0013
W.S. Hummers Jr. and R.E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958); https://doi.org/10.1021/ja01539a017
U. Hofmann and R. Holst, Ber. Dtsch. Chem. Ges. B, 72, 754 (1939); https://doi.org/10.1002/cber.19390720417
G. Ruess, Monatsh. Chem., 76, 381 (1947); https://doi.org/10.1007/BF00898987
W. Scholz and H.P. Boehm, Z. Anorg. Allg. Chem., 369, 327 (1969); https://doi.org/10.1002/zaac.19693690322
T. Nakajima and Y. Matsuo, Carbon, 32, 469 (1994); https://doi.org/10.1016/0008-6223(94)90168-6
D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway and V. Yu, Int. Schol. Res. Notices, 2012, 501686 (2012); https://doi.org/10.5402/2012/501686
M. Eizenberg and J.M. Blakely, J. Chem. Phys., 71, 3467 (1979); https://doi.org/10.1063/1.438736
B. Lang, Surf. Sci., 53, 317 (1975); https://doi.org/10.1016/0039-6028(75)90132-6
X. Lu, M. Yu, H. Huang and R.S. Ruoff, Nanotechnology, 10, 269 (1999); https://doi.org/10.1088/0957-4484/10/3/308
K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva and A.A. Firsov, Science, 306, 666 (2004); https://doi.org/10.1126/science.1102896
X. An, T. Simmons, R. Shah, C. Wolfe, K. Lewis, M. Washington, M. Nayak, S.K. Talapatra and S. Kar, Nano Lett., 10, 4295 (2010); https://doi.org/10.1021/nl903557p
X. Liang, Z. Fu and S. Chou, Nano Lett., 7, 3840 (2007); https://doi.org/10.1021/nl072566s
A. Reina, S. Thiele, X.T. Jia, S. Bhaviripudi, M.S. Dresselhaus, J.A. Schaefer and J. Kong, Nano Res., 2, 509 (2009);
https://doi.org/10.1007/s12274-009-9059-y
Q. Yu, J. Lian, S. Siriponglert, H. Li, Y.P. Chen and S.-S. Pei, Appl. Phys. Lett., 93, 113103 (2008); https://doi.org/10.1063/1.2982585
X.S. Li, W.W. Cai, J.H. An, S. Kim, J. Nah, D.X. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo and R.S. Ruoff, Science, 324, 1312 (2009); https://doi.org/10.1126/science.1171245
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.H. Ahn, P. Kim, J.Y. Choi and B.H. Hong, Nature, 457, 706 (2009); https://doi.org/10.1038/nature07719
M. Choucair, P. Thordarson and J.A. Stride, Nat. Nanotechnol., 4, 30 (2009); https://doi.org/10.1038/nnano.2008.365
P.W. Sutter, J.I. Flege and E.A. Sutter, Nat. Mater., 7, 406 (2008); https://doi.org/10.1038/nmat2166
J. Coraux, A.T. N’Diaye, C. Busse and T. Michely, Nano Lett., 8, 565 (2008); https://doi.org/10.1021/nl0728874
A. Reina, X.T. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M. Dresselhaus and S. Kong, Nano Lett., 9, 30 (2009); https://doi.org/10.1021/nl801827v
N.G. Shang, P. Papakonstantinou, M. McMullan, A. Stamboulis, M. Chu, A. Potenza, S.S. Dhesi and H. Marchetto, Adv. Funct. Mater., 18, 3506 (2008); https://doi.org/10.1002/adfm.200800951
S. Stankovich, D. Dikin, A. Dommett, G.H.B. Kohlhaas, K.M. Zimney, E.A. Stach, R.D. Piner, S.B.T. Nguyen and R.S. Ruoff, Nature, 442, 282 (2006); https://doi.org/10.1038/nature04969
M.D. Stoller, S. Park, Y. Zhu, J. An and R.S. Ruoff, Nano Lett., 8, 3498 (2008); https://doi.org/10.1021/nl802558y
X. Wang, L. Zhi and K. Mullen, Nano Lett., 8, 323 (2008); https://doi.org/10.1021/nl072838r
W.S. Hummers, The Oxidation of Graphite to Graphitic Oxide, US Patent 2,798,878 (1967).
L. Staudenmaier and V.Z. Darstellung, Eur. J. Inorg. Chem., 31, 1481 (1988).
V.H. Pham, T.V. Cuong, T.D. Nguyen-Phan, H.D. Pham, E.J. Kim, S.H. Hur, E.W. Shin, S. Kim and J.S. Chung, Chem. Commun., 46, 4375 (2010); https://doi.org/10.1039/c0cc00363h
X. Zhou, J. Zhang, H. Wu, H. Yang, J. Zhang and S. Guo, J. Phys. Chem. C, 115, 11957 (2011); https://doi.org/10.1021/jp202575j
C. Zhu, S. Guo, Y. Fang and S. Dong, ACS Nano, 4, 2429 (2010); https://doi.org/10.1021/nn1002387
J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang and S. Guo, Chem. Commun., 46, 1112 (2010); https://doi.org/10.1039/B917705A
G. Wang, J. Yang, J. Park, X. Gou, B. Wang, H. Liu and J. Yao, J. Phys. Chem., 112, 8192 (2008); https://doi.org/10.1021/jp710931h
X. Fan, W. Peng, Y. Li, X. Li, S. Wang, G. Zhang and F. Zhang, Adv. Mater., 20, 4490 (2008); https://doi.org/10.1002/adma.200801306
C.A. Amarnath, C.E. Hong, N.H. Kim, B.C. Ku, T. Kuila and J.H. Lee, Carbon, 49, 3497 (2011); https://doi.org/10.1016/j.carbon.2011.04.048
H.J. Shin, K.K. Kim, A. Benayad, S.M. Yoon, H.K. Park, I.-S. Jung, M.H. Jin, H.-K. Jeong, J.M. Kim, J.-Y. Choi and Y.H. Lee, Adv. Funct. Mater., 19, 1987 (2009); https://doi.org/10.1002/adfm.200900167
W. Qian, R. Hao, Y. Hou, Y. Tian, C. Shen, H. Gao and X. Liang, Nano Res., 2, 706 (2009); https://doi.org/10.1007/s12274-009-9074-z
L.Y. Jiao, X.R. Wang, G. Diankov, H.L. Wang and H.J. Dai, Nat. Nanotechnol., 5, 321 (2010); https://doi.org/10.1038/nnano.2010.54
K.S. Subrahmanyam, L.S. Panchakarla, A. Govindaraj and C.N.R. Rao, J. Phys. Chem. C, 113, 4257 (2009); https://doi.org/10.1021/jp900791y
L.S. Panchakarla, A. Govindaraj and C.N.R. Rao, Inorg. Chim. Acta, 363, 4163 (2010); https://doi.org/10.1016/j.ica.2010.07.057
Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang and H.M. Cheng, ACS Nano, 3, 411 (2009); https://doi.org/10.1021/nn900020u
K.S. Subrahmanyam, S.R.C. Vivekchand, A. Govindaraj and C.N.R. Rao, J. Mater. Chem., 18, 1517 (2008); https://doi.org/10.1039/b716536f
X. Fang, J. Donahue, A. Shashurin and M.Keidar, Graphene, 4, 53151 (2015); https://doi.org/10.4236/graphene.2015.41001
J.L. Qi, W.T. Zheng, X.H. Zheng, X. Wang and H.W. Tian, Appl. Surf. Sci., 257, 6531 (2011); https://doi.org/10.1016/j.apsusc.2011.02.069
P. Yang, L. Zhou, S. Zhang, N. Wan, W. Pan and W. Shen, J. Appl. Phys., 116, 244306 (2014); https://doi.org/10.1063/1.4904958
E. Moreau, F.J. Ferrer, D. Vignaud, S. Godey and X. Wallart, Phys. Status Solidi., A Appl. Mater. Sci., 207, 300 (2010); https://doi.org/10.1002/pssa.200982412
W. Gao, L.B. Alemany, L.J. Ci and P.M. Ajayan, Nat. Chem., 1, 403 (2009); https://doi.org/10.1038/nchem.281
Q. Zhuo, Y. Ma, J. Gao, P. Zhang, Y. Xia, Y. Tian, X.X. Sun, J. Zhong and X. Sun, Inorg. Chem., 52, 3141 (2013); https://doi.org/10.1021/ic302608g
R. Muszynski, B. Seger and P.V. Kamat, J. Phys. Chem. C, 112, 5263 (2008); https://doi.org/10.1021/jp800977b
H. Tien, W. Huang, Y.L. Yang, S.Y. Wang and J.Y. Ma, Carbon, 49, 1550 (2011); https://doi.org/10.1016/j.carbon.2010.12.022
Y. Zhou, Q. Bao, L. Tang, L.A.L. Zhong and K.P. Loh, Chem. Mater., 21, 2950 (2009); https://doi.org/10.1021/cm9006603
W. Zou, J. Zhu, Y. Sun and X. Wang, Mater. Chem. Phys., 125, 617 (2011); https://doi.org/10.1016/j.matchemphys.2010.10.008
S. Wu, Z. Yin, Q. He, G. Lu, X. Zhou and H. Zhang, J. Mater. Chem., 21, 3467 (2011); https://doi.org/10.1039/C0JM02267E
S. Wu, Z. Yin, Q. He, X. Huang, X. Zhou and H. Zhang, J. Phys. Chem. C, 114, 11816 (2010); https://doi.org/10.1021/jp103696u
F.A. He, J.T. Fan, D. Ma, L. Zhang, C. Leung and H.L. Chan, Carbon, 48, 3139 (2010); https://doi.org/10.1016/j.carbon.2010.04.052
T.A. Pham, B.C. Choi and Y.T. Jeong, Nanotechnology, 21, 465603 (2010); https://doi.org/10.1088/0957-4484/21/46/465603
P.T. Yin, S. Shah, M. Chhowalla and K.-B. Lee, Chem. Rev., 115, 2483 (2015); https://doi.org/10.1021/cr500537t
B. Garg, T. Bisht and Y.-C. Ling, Molecules, 19, 14582 (2014); https://doi.org/10.3390/molecules190914582
E. Rollings, G.-H. Gweon, S.Y. Zhou, B.S. Mun, J.L. McChesney, B.S. Hussain, A.V. Fedorov, P.N. First, W.A. de Heer and A. Lanzara, J. Phys. Chem. Solids, 67, 2172 (2006); https://doi.org/10.1016/j.jpcs.2006.05.010
D.G. Papageorgiou, I.A. Kinloch and R.J. Young, Prog. Mater. Sci., 90, 75 (2017); https://doi.org/10.1016/j.pmatsci.2017.07.004
T. Enoki, M. Suzuki and M. Endo, Graphite Intercalation Compounds and Applications, Oxford University Press (2003).
M.S. Dresselhaus and G. Dresselhaus, Adv. Phys., 51, 1 (2002); https://doi.org/10.1080/00018730110113644
N.M.R. Peres, Condens. Matter, 21, 095501 (2009); https://doi.org/10.1088/0953-8984/21/9/095501
R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres and A.K. Geim, Science, 320, 1308 (2008); https://doi.org/10.1126/science.1156965
F. Wang, Y.B. Zhang, C.S. Tian, C. Girit, A. Zettl, M. Crommie and Y.R. Shen, Science, 320, 206 (2008); https://doi.org/10.1126/science.1152793
Y.H. Ng, I.V. Lightcap, K. Goodwin, M. Matsumura and P.V. Kamat, J. Phys. Chem. Lett., 1, 2222 (2010); https://doi.org/10.1021/jz100728z
M. Wang, X. Shang, X. Yu, R. Liu, Y. Xie, H. Zhao, H. Cao and G. Zhang, Phys. Chem. Chem. Phys., 16, 26016 (2014); https://doi.org/10.1039/C4CP03824J
O. Akhavan and E. Ghaderi, ACS Nano, 4, 5731 (2010); https://doi.org/10.1021/nn101390x
H. Ji, H. Sun and X. Qu, Adv. Drug Deliv. Rev., 105, 176 (2016); https://doi.org/10.1016/j.addr.2016.04.009
X. Wu, S. Tan, Y. Xing, Q. Pu, M. Wu and J.X. Zhao, Colloids Surf. B Biointerfaces, 157, 1 (2017); https://doi.org/10.1016/j.colsurfb.2017.05.024
P. Kumar, P. Huo, R. Zhang, B. Liu, Nanomaterials, 5, 737 (2019); https://doi.org/10.3390/nano9050737
B. Marta, M. Potara, M. Iliut, E. Jakab, T. Radu, F. Imre-Lucaci, G. Katona, O. Popescu and S. Astilean, Colloids Surf. A Physicochem. Eng. Asp., 487, 113 (2015); https://doi.org/10.1016/j.colsurfa.2015.09.046
N. Hussain, A. Gogoi, R.K. Sarma and P. Sharma, ChemPlusChem, 79, 1774 (2014); https://doi.org/10.1002/cplu.201402240
Y. Ouyang, X. Cai, Q. Shi, L. Liu, D. Wan, S. Tan and Y. Ouyang, Colloids Surf. B Biointerfaces, 107, 107 (2013); https://doi.org/10.1016/j.colsurfb.2013.01.073