Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Equatorial Gate Opening Efficiency of Single and Double, S-S Gated Hemicarcerands
Asian Journal of Chemistry,
Vol. 34 No. 6 (2022): Vol 34 Issue 6
Abstract
Covalent disulphides bonds are very strong in oxidizing environments and are weakened in reducing environments. So far, there has been no reported study on multi-gate induced hemicarcerands. In this work, the stability and redox properties were investigated, as well as efficiency of the number of disulphide gates can provide in equatorial escape of a guest in two chosen hemicarcerand systems. Single and opposite double gated hemicarcerands were designed in Gauss view 5.0 and structures were optimized using HF 3-21G* basis set. It is concluded from the studies that the opposite double gated system has more guest encapsulating efficiency in redox conditions than single gated hemicarcerand, which makes it a potential cancer drug carrier due to its selective gate opening at high redox conditions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- D.J. Cram, S. Karbach, Y.H. Kim, L. Baczynskyj and G.W. Kallemeyn, J. Am. Chem. Soc., 107, 2575 (1985); https://doi.org/10.1021/ja00294a076
- D.J. Cram, M.E. Tanner and R. Thomas, Angew. Chem. Int. Ed., 30, 1024 (1991); https://doi.org/10.1002/anie.199110241
- R. Warmuth and J. Yoon, Acc. Chem. Res., 34, 95 (2001); https://doi.org/10.1021/ar980082k
- C. Vondem Bussche-Hünnefeld, D. Bühring, C.B. Knobler and D.J. Cram, J. Chem. Soc. Chem. Commun., 1085 (1995); https://doi.org/10.1039/C39950001085
- X. Liu, Y. Liu, G. Li and R. Warmuth, Angew. Chem., 118, 915 (2006); https://doi.org/10.1002/ange.200504049
- K. Paek, H. Ihm, S. Yun and H.C. Lee, Tetrahedron Lett., 40, 8905 (1999); https://doi.org/10.1016/S0040-4039(99)01928-0
- J.P. Snyder and L. Carlsen, J. Am. Chem. Soc., 99, 2931 (1977); https://doi.org/10.1021/ja00451a014
- F. Liu, R.C. Helgeson and K.N. Houk, Acc. Chem. Res., 47, 2168 (2014); https://doi.org/10.1021/ar5001296
- C.F. Fischer, Hartree-Fock Method for Atoms. A Numerical Approach, John Wiley & Sons (1977).
- J. Sun, B.O. Patrick and J.C. Sherman, Tetrahedron, 65, 7296 (2009); https://doi.org/10.1016/j.tet.2008.11.110
- B. Nagy and F. Jensen, Rev. Comput. Chem., 30, 93 (2017); https://doi.org/10.1002/9781119356059.ch3
- D.W. Siemann and K.L. Beyers, Br. J. Cancer, 68, 1071 (1993); https://doi.org/10.1038/bjc.1993.484
- H. Ehrenreich and M.H. Cohen, Phys. Rev., 115, 786 (1959); https://doi.org/10.1103/PhysRev.115.786
- D.A. Liberman, D.T. Cromer and J.T. Waber, Comput. Phys. Commun., 2, 107 (1971); https://doi.org/10.1016/0010-4655(71)90020-8
- J.C. Slater, Phys. Rev., 91, 528 (1953); https://doi.org/10.1103/PhysRev.91.528
- M.T. Yin and M.L. Cohen, Phys. Rev. B Condens. Matter, 25, 7403 (1982); https://doi.org/10.1103/PhysRevB.25.7403
- J.C. Slater, Phys. Rev., 81, 385 (1951); https://doi.org/10.1103/PhysRev.81.385
- X. Hu and W. Yang, J. Chem. Phys., 132, 054109 (2010); https://doi.org/10.1063/1.3304922
- E.R. Davidson and D. Feller, Chem. Rev., 86, 681 (1986); https://doi.org/10.1021/cr00074a002
- A.L. Magalhães, J. Chem. Educ., 91, 2124 (2014); https://doi.org/10.1021/ed500437a
- R. Krishnan, J.S. Binkley, R. Seeger and J.A. Pople, J. Chem. Phys., 72, 650 (1980); https://doi.org/10.1063/1.438955
References
D.J. Cram, S. Karbach, Y.H. Kim, L. Baczynskyj and G.W. Kallemeyn, J. Am. Chem. Soc., 107, 2575 (1985); https://doi.org/10.1021/ja00294a076
D.J. Cram, M.E. Tanner and R. Thomas, Angew. Chem. Int. Ed., 30, 1024 (1991); https://doi.org/10.1002/anie.199110241
R. Warmuth and J. Yoon, Acc. Chem. Res., 34, 95 (2001); https://doi.org/10.1021/ar980082k
C. Vondem Bussche-Hünnefeld, D. Bühring, C.B. Knobler and D.J. Cram, J. Chem. Soc. Chem. Commun., 1085 (1995); https://doi.org/10.1039/C39950001085
X. Liu, Y. Liu, G. Li and R. Warmuth, Angew. Chem., 118, 915 (2006); https://doi.org/10.1002/ange.200504049
K. Paek, H. Ihm, S. Yun and H.C. Lee, Tetrahedron Lett., 40, 8905 (1999); https://doi.org/10.1016/S0040-4039(99)01928-0
J.P. Snyder and L. Carlsen, J. Am. Chem. Soc., 99, 2931 (1977); https://doi.org/10.1021/ja00451a014
F. Liu, R.C. Helgeson and K.N. Houk, Acc. Chem. Res., 47, 2168 (2014); https://doi.org/10.1021/ar5001296
C.F. Fischer, Hartree-Fock Method for Atoms. A Numerical Approach, John Wiley & Sons (1977).
J. Sun, B.O. Patrick and J.C. Sherman, Tetrahedron, 65, 7296 (2009); https://doi.org/10.1016/j.tet.2008.11.110
B. Nagy and F. Jensen, Rev. Comput. Chem., 30, 93 (2017); https://doi.org/10.1002/9781119356059.ch3
D.W. Siemann and K.L. Beyers, Br. J. Cancer, 68, 1071 (1993); https://doi.org/10.1038/bjc.1993.484
H. Ehrenreich and M.H. Cohen, Phys. Rev., 115, 786 (1959); https://doi.org/10.1103/PhysRev.115.786
D.A. Liberman, D.T. Cromer and J.T. Waber, Comput. Phys. Commun., 2, 107 (1971); https://doi.org/10.1016/0010-4655(71)90020-8
J.C. Slater, Phys. Rev., 91, 528 (1953); https://doi.org/10.1103/PhysRev.91.528
M.T. Yin and M.L. Cohen, Phys. Rev. B Condens. Matter, 25, 7403 (1982); https://doi.org/10.1103/PhysRevB.25.7403
J.C. Slater, Phys. Rev., 81, 385 (1951); https://doi.org/10.1103/PhysRev.81.385
X. Hu and W. Yang, J. Chem. Phys., 132, 054109 (2010); https://doi.org/10.1063/1.3304922
E.R. Davidson and D. Feller, Chem. Rev., 86, 681 (1986); https://doi.org/10.1021/cr00074a002
A.L. Magalhães, J. Chem. Educ., 91, 2124 (2014); https://doi.org/10.1021/ed500437a
R. Krishnan, J.S. Binkley, R. Seeger and J.A. Pople, J. Chem. Phys., 72, 650 (1980); https://doi.org/10.1063/1.438955