Copyright (c) 2022 AJC
This work is licensed under a Creative Commons Attribution 4.0 International License.
Photoelectrochemical Efficiency Applications of Antimony-doped Tin Oxide Thin Film by Thermal Evaporation Technique
Corresponding Author(s) : A. Ayeshamariam
Asian Journal of Chemistry,
Vol. 34 No. 6 (2022): Vol 34 Issue 6
Abstract
Antimony-doped tin oxide (ATO) Sb–SnO2 has been prepared by thermal evaporation technique on indium tin oxide (ITO) glass substrate. The prepared ATO thin film was characterized by X-ray diffraction technique (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDAX), UV-vis’s spectrometer, Fourier transform infrared spectroscopy (FTIR) and photoluminescence studies (PLS) at room temperature, 250 and 500 ºC. Furthermore, the as-fabricated ATO/indium tin oxide device was subjected to electrical measurements, was determined at room temperature and 500 ºC without etching, chemical etching and photoetching processes. Post-treatment, such as annealing and etching, electrochemical photocurrent results showed that the maximum photoelectrochemical performance without etching at 500 ºC of the PEC cell.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- E. Shanthi, V. Dutta, A. Banerjee and K.L. Chopra, J. Appl. Phys., 51, 6243 (1980); https://doi.org/10.1063/1.327610
- G. Jain and R. Kumar, Opt. Mater., 26, 27 (2004); https://doi.org/10.1016/j.optmat.2003.12.006
- S. Shanthi, C. Subramanian and P. Ramasamy, Cryst. Res. Technol., 34, 1037 (1999); https://doi.org/10.1002/(SICI)1521-4079(199909)34:8<1037::AIDCRAT1037>3.0.CO;2-J
- H. Kaneko and K. Miyake, J. Appl. Phys., 53, 3629 (1982); https://doi.org/10.1063/1.331144
- K. Ravichandran and P. Philominathan, Mater. Lett., 62, 2980 (2008); https://doi.org/10.1016/j.matlet.2008.01.119
- L. Lili, M. Liming and D. Xuechen, Mater. Res. Bull., 41, 541 (2006); https://doi.org/10.1016/j.materresbull.2005.09.011
- J.-B. Han, H.-J. Zhou and Q.-Q. Wang, Mater. Lett., 60, 252 (2006); https://doi.org/10.1016/j.matlet.2005.08.032
- J. Ma, Y. Wang, F. Ji, X. Yu and H. Ma, Mater. Lett., 59, 2142 (2005); https://doi.org/10.1016/j.matlet.2005.02.049.
- K.y. Rajpure and C.H. Bhosale, Mater. Chem. Phys., 63, 263 (2000); https://doi.org/10.1016/S0254-0584(99)00233-3
- Y. Hu, H. Zhang and H. Yang, J. Alloys Compd., 453, 292 (2008); https://doi.org/10.1016/j.jallcom.2006.11.062
- J. Lee, Thin Solid Films, 516, 1386 (2008); https://doi.org/10.1016/j.tsf.2007.05.027
- M.R.S. Castro, P.W. Oliveira and H.K. Schmidt, Semicond. Sci. Technol., 23, 035013 (2008); https://doi.org/10.1088/0268-1242/23/3/035013
- J.P. Coleman, J.J. Freeman, P. Madhukar and J.H. Wagenknecht, Displays, 20, 145 (1999); https://doi.org/10.1016/S0141-9382(99)00016-5
- Y.-H. Wong S. Cheng, K.Y. Chan and X.Y. Li, J. Electrochem. Soc., 152, D197 (2005); https://doi.org/10.1149/1.2041007
- E.R. Leite, M.I.B. Bernardi, E. Longo, J.A. Varela and C.A. Paskocimas, Thin Solid Films, 449, 67 (2004); https://doi.org/10.1016/j.tsf.2003.10.101
- M. Acciarri, S. Binetti, A. Le Donne, B. Lorenzi, L. Caccamo, L. Miglio, R. Moneta, S. Marchionna and M. Meschia, Cryst. Res. Technol., 46, 871 (2011); https://doi.org/10.1002/crat.201000670
- A.P. Rizzato, C.V. Santilli, S.H. Pulcinelli and A.F. Craievich, J. Appl. Cryst., 36, 736 (2003); https://doi.org/10.1107/S0021889803004953
- R. Ramarajan, M. Kovendhan, K. Thangaraju, D.P. Joseph and R.R. Babu, Appl. Surf. Sci., 487, 1385 (2019); https://doi.org/10.1016/j.apsusc.2019.05.079
- T.Y. Lim, C.Y. Kim, B.S. Kim, B.G. Choi and K. Shim, J. Mater. Sci. Mater. Electron., 16, 71 (2005); https://doi.org/10.1007/s10854-005-6453-4
- T. Jintakosol, Appl. Mechan. Mater., 749, 141 (2015); https://doi.org/10.4028/www.scientific.net/AMM.749.141
- L. Zhao, D.L. Zhang, G. Du, J.M. Xu and D.X. Zhou, Mater. Trans. Tech., 280, 831 (2005).
- G. Bhatia, V.K. Gupta, M.M. Patidar, S.B. Srivasatava, D. Singh, M. Gangrade and V. Ganesan, AIP Conf. Proc., 1953, 100084 (2018); https://doi.org/10.1063/1.5033020
- H. Kim and A. Pique, Appl. Phys. Lett., 84, 218 (2004); https://doi.org/10.1063/1.1639515
- Y. Hu and S.H. Hou, Mater. Chem. Phys., 86, 21 (2004); https://doi.org/10.1016/j.matchemphys.2004.01.039
- H.-R. An, C.Y. Kim, S.-T. Oh and H.-J. Ahn, Ceram. Int., 40, 385 (2014); https://doi.org/10.1016/j.ceramint.2013.06.013
- V. Stambouli, M. Labeau, I. Matko, B. Chenevier, O. Renault, C. Guiducci, P. Chaudouët, H. Roussel, D. Nibkin and E. Dupuis, Sens. Actuators B Chem., 113, 1025 (2006); https://doi.org/10.1016/j.snb.2005.03.108
- A.A. Alsac, A. Yildiz, T. Serin and N. Serin, J. Appl. Phys., 113, 063701 (2013); https://doi.org/10.1063/1.4790879
- A. Ayeshamariam, C. Sanjeeviraja and R.P. Samy, J. Photonics Spintronics, 2, 4 (2013).
- G. Hodes, D. Cahen and J. Manassen, Nature, 260, 312 (1976); https://doi.org/10.1038/260312a0
- B.D. James, G.N. Baum, J. Perez and K.N. Baum, Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production. DOE Contract Number: GS-10F-009J (2009).
- W.W. Zhao, J.J. Xu and H.Y. Chen, Anal. Chem., 90, 615 (2018); https://doi.org/10.1021/acs.analchem.7b04672
- K. Rajeshwar, J. Appl. Electrochem., 25, 1067 (1995); https://doi.org/10.1007/BF00242533
References
E. Shanthi, V. Dutta, A. Banerjee and K.L. Chopra, J. Appl. Phys., 51, 6243 (1980); https://doi.org/10.1063/1.327610
G. Jain and R. Kumar, Opt. Mater., 26, 27 (2004); https://doi.org/10.1016/j.optmat.2003.12.006
S. Shanthi, C. Subramanian and P. Ramasamy, Cryst. Res. Technol., 34, 1037 (1999); https://doi.org/10.1002/(SICI)1521-4079(199909)34:8<1037::AIDCRAT1037>3.0.CO;2-J
H. Kaneko and K. Miyake, J. Appl. Phys., 53, 3629 (1982); https://doi.org/10.1063/1.331144
K. Ravichandran and P. Philominathan, Mater. Lett., 62, 2980 (2008); https://doi.org/10.1016/j.matlet.2008.01.119
L. Lili, M. Liming and D. Xuechen, Mater. Res. Bull., 41, 541 (2006); https://doi.org/10.1016/j.materresbull.2005.09.011
J.-B. Han, H.-J. Zhou and Q.-Q. Wang, Mater. Lett., 60, 252 (2006); https://doi.org/10.1016/j.matlet.2005.08.032
J. Ma, Y. Wang, F. Ji, X. Yu and H. Ma, Mater. Lett., 59, 2142 (2005); https://doi.org/10.1016/j.matlet.2005.02.049.
K.y. Rajpure and C.H. Bhosale, Mater. Chem. Phys., 63, 263 (2000); https://doi.org/10.1016/S0254-0584(99)00233-3
Y. Hu, H. Zhang and H. Yang, J. Alloys Compd., 453, 292 (2008); https://doi.org/10.1016/j.jallcom.2006.11.062
J. Lee, Thin Solid Films, 516, 1386 (2008); https://doi.org/10.1016/j.tsf.2007.05.027
M.R.S. Castro, P.W. Oliveira and H.K. Schmidt, Semicond. Sci. Technol., 23, 035013 (2008); https://doi.org/10.1088/0268-1242/23/3/035013
J.P. Coleman, J.J. Freeman, P. Madhukar and J.H. Wagenknecht, Displays, 20, 145 (1999); https://doi.org/10.1016/S0141-9382(99)00016-5
Y.-H. Wong S. Cheng, K.Y. Chan and X.Y. Li, J. Electrochem. Soc., 152, D197 (2005); https://doi.org/10.1149/1.2041007
E.R. Leite, M.I.B. Bernardi, E. Longo, J.A. Varela and C.A. Paskocimas, Thin Solid Films, 449, 67 (2004); https://doi.org/10.1016/j.tsf.2003.10.101
M. Acciarri, S. Binetti, A. Le Donne, B. Lorenzi, L. Caccamo, L. Miglio, R. Moneta, S. Marchionna and M. Meschia, Cryst. Res. Technol., 46, 871 (2011); https://doi.org/10.1002/crat.201000670
A.P. Rizzato, C.V. Santilli, S.H. Pulcinelli and A.F. Craievich, J. Appl. Cryst., 36, 736 (2003); https://doi.org/10.1107/S0021889803004953
R. Ramarajan, M. Kovendhan, K. Thangaraju, D.P. Joseph and R.R. Babu, Appl. Surf. Sci., 487, 1385 (2019); https://doi.org/10.1016/j.apsusc.2019.05.079
T.Y. Lim, C.Y. Kim, B.S. Kim, B.G. Choi and K. Shim, J. Mater. Sci. Mater. Electron., 16, 71 (2005); https://doi.org/10.1007/s10854-005-6453-4
T. Jintakosol, Appl. Mechan. Mater., 749, 141 (2015); https://doi.org/10.4028/www.scientific.net/AMM.749.141
L. Zhao, D.L. Zhang, G. Du, J.M. Xu and D.X. Zhou, Mater. Trans. Tech., 280, 831 (2005).
G. Bhatia, V.K. Gupta, M.M. Patidar, S.B. Srivasatava, D. Singh, M. Gangrade and V. Ganesan, AIP Conf. Proc., 1953, 100084 (2018); https://doi.org/10.1063/1.5033020
H. Kim and A. Pique, Appl. Phys. Lett., 84, 218 (2004); https://doi.org/10.1063/1.1639515
Y. Hu and S.H. Hou, Mater. Chem. Phys., 86, 21 (2004); https://doi.org/10.1016/j.matchemphys.2004.01.039
H.-R. An, C.Y. Kim, S.-T. Oh and H.-J. Ahn, Ceram. Int., 40, 385 (2014); https://doi.org/10.1016/j.ceramint.2013.06.013
V. Stambouli, M. Labeau, I. Matko, B. Chenevier, O. Renault, C. Guiducci, P. Chaudouët, H. Roussel, D. Nibkin and E. Dupuis, Sens. Actuators B Chem., 113, 1025 (2006); https://doi.org/10.1016/j.snb.2005.03.108
A.A. Alsac, A. Yildiz, T. Serin and N. Serin, J. Appl. Phys., 113, 063701 (2013); https://doi.org/10.1063/1.4790879
A. Ayeshamariam, C. Sanjeeviraja and R.P. Samy, J. Photonics Spintronics, 2, 4 (2013).
G. Hodes, D. Cahen and J. Manassen, Nature, 260, 312 (1976); https://doi.org/10.1038/260312a0
B.D. James, G.N. Baum, J. Perez and K.N. Baum, Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production. DOE Contract Number: GS-10F-009J (2009).
W.W. Zhao, J.J. Xu and H.Y. Chen, Anal. Chem., 90, 615 (2018); https://doi.org/10.1021/acs.analchem.7b04672
K. Rajeshwar, J. Appl. Electrochem., 25, 1067 (1995); https://doi.org/10.1007/BF00242533